» Articles » PMID: 29899944

Radical Transfer in Ribonucleotide Reductase: a NHY/RA-α Mutant Unmasks a New Conformation of the Pathway Residue 731

Overview
Journal Chem Sci
Specialty Chemistry
Date 2018 Jun 15
PMID 29899944
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Ribonucleotide reductases (RNRs) catalyze the conversion of ribonucleotides to deoxyribonucleotides in all living organisms. The catalytic cycle of RNR involves a long-range proton-coupled electron transfer (PCET) from a tyrosyl radical (Y˙) in subunit β2 to a cysteine (C) in the active site of subunit α2, which subsequently initiates nucleotide reduction. This oxidation occurs over 35 Å and involves a specific pathway of redox active amino acids (Y ↔ [W?] ↔ Y in β2 to Y ↔ Y ↔ C in α2). The mechanisms of the PCET steps at the interface of the α2β2 complex remain puzzling due to a lack of structural information for this region. Recently, DFT calculations on the 3-aminotyrosyl radical (NHY˙)-α2 trapped by incubation of NHY-α2/β2/CDP(substrate)/ATP(allosteric effector) suggested that R-α2, a residue close to the α2β2 interface, interacts with NHY˙ and accounts in part for its perturbed EPR parameters. To examine its role, we further modified NHY-α2 with a RA substitution. NHY˙/RA generated upon incubation of NHY/RA-α2/β2/CDP/ATP was investigated using multi-frequency (34, 94 and 263 GHz) EPR, 34 GHz pulsed electron-electron double resonance (PELDOR) and electron-nuclear double resonance (ENDOR) spectroscopies. The data indicate a large conformational change in NHY˙/RA relative to the NHY˙ single mutant. Particularly, the inter-spin distance from NHY˙/RA in one αβ pair to Y˙ in a second αβ pair decreases by 3 Å in the presence of the RA mutation. This is the first experimental evidence for the flexibility of pathway residue Y-α2 in an α2β2 complex and suggests a role for R in the stacked Y/Y conformation involved in collinear PCET. Furthermore, NHY˙/RA serves as a probe of the PCET process across the subunit interface.

Citing Articles

Hydrogen Tunneling and Conformational Motions in Nonadiabatic Proton-Coupled Electron Transfer between Interfacial Tyrosines in Ribonucleotide Reductase.

Zhong J, Zhu Q, Soudackov A, Hammes-Schiffer S J Am Chem Soc. 2025; 147(5):4459-4468.

PMID: 39841588 PMC: 11829447. DOI: 10.1021/jacs.4c15756.


2.6-Å resolution cryo-EM structure of a class Ia ribonucleotide reductase trapped with mechanism-based inhibitor NCDP.

Westmoreland D, Feliciano P, Kang G, Cui C, Kim A, Stubbe J Proc Natl Acad Sci U S A. 2024; 121(45):e2417157121.

PMID: 39475643 PMC: 11551348. DOI: 10.1073/pnas.2417157121.


2.6-Å resolution cryo-EM structure of a class Ia ribonucleotide reductase trapped with mechanism-based inhibitor NCDP.

Westmoreland D, Feliciano P, Kang G, Cui C, Kim A, Stubbe J bioRxiv. 2024; .

PMID: 39416103 PMC: 11482829. DOI: 10.1101/2024.10.09.617422.


Conformational control over proton-coupled electron transfer in metalloenzymes.

Fatima S, Olshansky L Nat Rev Chem. 2024; 8(10):762-775.

PMID: 39223400 PMC: 11531298. DOI: 10.1038/s41570-024-00646-7.


Spectroscopically Orthogonal Labelling to Disentangle Site-Specific Nitroxide Label Distributions.

Vitali V, Ackermann K, Hagelueken G, Bode B Appl Magn Reson. 2024; 55(1-3):187-205.

PMID: 38357007 PMC: 10861635. DOI: 10.1007/s00723-023-01611-1.


References
1.
Kolberg M, Strand K, Graff P, Andersson K . Structure, function, and mechanism of ribonucleotide reductases. Biochim Biophys Acta. 2004; 1699(1-2):1-34. DOI: 10.1016/j.bbapap.2004.02.007. View

2.
Reece S, Hodgkiss J, Stubbe J, Nocera D . Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology. Philos Trans R Soc Lond B Biol Sci. 2006; 361(1472):1351-64. PMC: 1647304. DOI: 10.1098/rstb.2006.1874. View

3.
Grimme S, Antony J, Ehrlich S, Krieg H . A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010; 132(15):154104. DOI: 10.1063/1.3382344. View

4.
Grimme S, Ehrlich S, Goerigk L . Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011; 32(7):1456-65. DOI: 10.1002/jcc.21759. View

5.
Bennati M, Robblee J, Mugnaini V, Stubbe J, Freed J, Borbat P . EPR distance measurements support a model for long-range radical initiation in E. coli ribonucleotide reductase. J Am Chem Soc. 2005; 127(43):15014-5. DOI: 10.1021/ja054991y. View