Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion
Overview
Affiliations
Electromagnetic energy radiation is becoming a "health-killer" of living bodies, especially around industrial transformer substation and electricity pylon. Harvesting, converting, and storing waste energy for recycling are considered the ideal ways to control electromagnetic radiation. However, heat-generation and temperature-rising with performance degradation remain big problems. Herein, graphene-silica xerogel is dissected hierarchically from functions to "genes," thermally driven relaxation and charge transport, experimentally and theoretically, demonstrating a competitive synergy on energy conversion. A generic approach of "material genes sequencing" is proposed, tactfully transforming the negative effects of heat energy to superiority for switching self-powered and self-circulated electromagnetic devices, beneficial for waste energy harvesting, conversion, and storage. Graphene networks with "well-sequencing genes" (w = P /P > 0.2) can serve as nanogenerators, thermally promoting electromagnetic wave absorption by 250%, with broadened bandwidth covering the whole investigated frequency. This finding of nonionic energy conversion opens up an unexpected horizon for converting, storing, and reusing waste electromagnetic energy, providing the most promising way for governing electromagnetic pollution with self-powered and self-circulated electromagnetic devices.
Hybrid electromagnetic and moisture energy harvesting enabled by ionic diode films.
Gao Z, Fang C, Gao Y, Yin X, Zhang S, Lu J Nat Commun. 2025; 16(1):312.
PMID: 39747851 PMC: 11697010. DOI: 10.1038/s41467-024-55030-2.
Wang Y, Wang Y, Liu T, Zhao Q, Li C, Cao M Nanomicro Lett. 2024; 17(1):65.
PMID: 39556136 PMC: 11573944. DOI: 10.1007/s40820-024-01578-z.
Lebedeva E, Ivanova E, Trukhinov D, Istomina T, Knyazev N, Malkin A Polymers (Basel). 2024; 16(15).
PMID: 39125178 PMC: 11314315. DOI: 10.3390/polym16152153.
Fu H, Qi Q, Li Y, Pan J, Zhong C Nanomaterials (Basel). 2024; 14(15).
PMID: 39120375 PMC: 11313839. DOI: 10.3390/nano14151270.
Jia X, Zhang H, Liu F, Yi Q, Li C, Wang X Nanomaterials (Basel). 2024; 14(14).
PMID: 39057871 PMC: 11279823. DOI: 10.3390/nano14141194.