» Articles » PMID: 29875396

BE-PLUS: a New Base Editing Tool with Broadened Editing Window and Enhanced Fidelity

Overview
Journal Cell Res
Specialty Cell Biology
Date 2018 Jun 8
PMID 29875396
Citations 62
Authors
Affiliations
Soon will be listed here.
Abstract

Base editor (BE), containing a cytidine deaminase and catalytically defective Cas9, has been widely used to perform base editing. However, the narrow editing window of BE limits its utility. Here, we developed a new editing technology named as base editor for programming larger C to U (T) scope (BE-PLUS) by fusing 10 copies of GCN4 peptide to nCas9(D10A) for recruiting scFv-APOBEC-UGI-GB1 to the target sites. The new system achieves base editing with a broadened window, resulting in an increased genome-targeting scope. Interestingly, the new system yielded much fewer unwanted indels and non-C-to-T conversions. We also demonstrated its potential use in gene disruption across the whole genome through induction of stop codons (iSTOP). Taken together, the BE-PLUS system offers a new editing tool with increased editing window and enhanced fidelity.

Citing Articles

A universal and wide-range cytosine base editor via domain-inlaid and fidelity-optimized CRISPR-FrCas9.

Hu L, Han J, Wang H, Cheng Z, Lv C, Liu D Nat Commun. 2025; 16(1):1260.

PMID: 39893181 PMC: 11787337. DOI: 10.1038/s41467-025-56655-7.


A comprehensive benchmark for multiple highly efficient base editors with broad targeting scope.

Wang X, Cheng X, Li Z, Ma S, Zhang H, Chen Z bioRxiv. 2025; .

PMID: 39763781 PMC: 11702641. DOI: 10.1101/2024.12.17.628899.


Advancements of CRISPR-Mediated Base Editing in Crops and Potential Applications in .

Yang X, Zhu P, Gui J Int J Mol Sci. 2024; 25(15).

PMID: 39125884 PMC: 11313136. DOI: 10.3390/ijms25158314.


Harnessing the evolving CRISPR/Cas9 for precision oncology.

Li T, Li S, Kang Y, Zhou J, Yi M J Transl Med. 2024; 22(1):749.

PMID: 39118151 PMC: 11312220. DOI: 10.1186/s12967-024-05570-4.


Gene editing therapy for cardiovascular diseases.

Wu X, Yang J, Zhang J, Song Y MedComm (2020). 2024; 5(7):e639.

PMID: 38974714 PMC: 11224995. DOI: 10.1002/mco2.639.


References
1.
Komor A, Badran A, Liu D . CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. 2017; 169(3):559. DOI: 10.1016/j.cell.2017.04.005. View

2.
Ma H, Marti-Gutierrez N, Park S, Wu J, Lee Y, Suzuki K . Correction of a pathogenic gene mutation in human embryos. Nature. 2017; 548(7668):413-419. DOI: 10.1038/nature23305. View

3.
Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M . Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016; 353(6305). DOI: 10.1126/science.aaf8729. View

4.
Kuscu C, Parlak M, Tufan T, Yang J, Szlachta K, Wei X . CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods. 2017; 14(7):710-712. DOI: 10.1038/nmeth.4327. View

5.
Mali P, Aach J, Stranges P, Esvelt K, Moosburner M, Kosuri S . CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013; 31(9):833-8. PMC: 3818127. DOI: 10.1038/nbt.2675. View