Liu R, Wen S, Xing Y
PLoS One. 2025; 20(2):e0318530.
PMID: 39965022
PMC: 11835343.
DOI: 10.1371/journal.pone.0318530.
Didonna A, Ramos Lopez D, Iaselli G, Amoroso N, Ferrara N, Pugliese G
Cancers (Basel). 2025; 17(1.
PMID: 39796757
PMC: 11719915.
DOI: 10.3390/cancers17010130.
Montgomery M, Andersen F, Mathiasen R, Borgwardt L, Andersen K, Ladefoged C
Diagnostics (Basel). 2025; 14(24.
PMID: 39767149
PMC: 11727418.
DOI: 10.3390/diagnostics14242788.
Huang J, Zhong A, Liu Y
Quant Imaging Med Surg. 2024; 14(12):9290-9305.
PMID: 39698638
PMC: 11652037.
DOI: 10.21037/qims-24-1145.
Csikos C, Barna S, Kovacs A, Czina P, Budai A, Szolikova M
Diagnostics (Basel). 2024; 14(23).
PMID: 39682594
PMC: 11640603.
DOI: 10.3390/diagnostics14232686.
Artificial intelligence application in the diagnosis and treatment of bladder cancer: advance, challenges, and opportunities.
Ma X, Zhang Q, He L, Liu X, Xiao Y, Hu J
Front Oncol. 2024; 14:1487676.
PMID: 39575423
PMC: 11578829.
DOI: 10.3389/fonc.2024.1487676.
A systematic review of deep learning-based denoising for low-dose computed tomography from a perceptual quality perspective.
Kim W, Jeon S, Byun G, Yoo H, Choi J
Biomed Eng Lett. 2024; 14(6):1153-1173.
PMID: 39465112
PMC: 11502640.
DOI: 10.1007/s13534-024-00419-7.
Weakly supervised low-dose computed tomography denoising based on generative adversarial networks.
Liao P, Zhang X, Wu Y, Chen H, Du W, Liu H
Quant Imaging Med Surg. 2024; 14(8):5571-5590.
PMID: 39144020
PMC: 11320552.
DOI: 10.21037/qims-24-68.
Learning a stable approximation of an existing but unknown inverse mapping: application to the half-time circular Radon transform.
Cam R, Villa U, Anastasio M
Inverse Probl. 2024; 40(8):085002.
PMID: 38933410
PMC: 11197394.
DOI: 10.1088/1361-6420/ad4f0a.
Blind CT Image Quality Assessment Using DDPM-Derived Content and Transformer-Based Evaluator.
Shi Y, Xia W, Wang G, Mou X
IEEE Trans Med Imaging. 2024; 43(10):3559-3569.
PMID: 38913529
PMC: 11560125.
DOI: 10.1109/TMI.2024.3418652.
Parallel processing model for low-dose computed tomography image denoising.
Yao L, Wang J, Wu Z, Du Q, Yang X, Li M
Vis Comput Ind Biomed Art. 2024; 7(1):14.
PMID: 38865022
PMC: 11169366.
DOI: 10.1186/s42492-024-00165-8.
Image fusion-based low-dose CBCT enhancement method for visualizing miniscrew insertion in the infrazygomatic crest.
Sun P, Yang J, Tian X, Yuan G
BMC Med Imaging. 2024; 24(1):114.
PMID: 38760689
PMC: 11100247.
DOI: 10.1186/s12880-024-01289-2.
A systematic literature review: deep learning techniques for synthetic medical image generation and their applications in radiotherapy.
Sherwani M, Gopalakrishnan S
Front Radiol. 2024; 4:1385742.
PMID: 38601888
PMC: 11004271.
DOI: 10.3389/fradi.2024.1385742.
Image quality evaluation in deep-learning-based CT noise reduction using virtual imaging trial methods: Contrast-dependent spatial resolution.
Zhou Z, Gong H, Hsieh S, McCollough C, Yu L
Med Phys. 2024; 51(8):5399-5413.
PMID: 38555876
PMC: 11321944.
DOI: 10.1002/mp.17029.
CT image denoising methods for image quality improvement and radiation dose reduction.
Sadia R, Chen J, Zhang J
J Appl Clin Med Phys. 2024; 25(2):e14270.
PMID: 38240466
PMC: 10860577.
DOI: 10.1002/acm2.14270.
A two-stage deep-learning framework for CT denoising based on a clinically structure-unaligned paired data set.
Hu R, Xie Y, Zhang L, Liu L, Luo H, Wu R
Quant Imaging Med Surg. 2024; 14(1):335-351.
PMID: 38223072
PMC: 10784028.
DOI: 10.21037/qims-23-403.
Development, validation, and simplification of a scanner-specific CT simulator.
Tunissen S, Oostveen L, Moriakov N, Teuwen J, Michielsen K, Smit E
Med Phys. 2023; 51(3):2081-2095.
PMID: 37656009
PMC: 10904672.
DOI: 10.1002/mp.16679.
Self-trained deep convolutional neural network for noise reduction in CT.
Zhou Z, Inoue A, McCollough C, Yu L
J Med Imaging (Bellingham). 2023; 10(4):044008.
PMID: 37636895
PMC: 10449263.
DOI: 10.1117/1.JMI.10.4.044008.
Review and Prospect: Artificial Intelligence in Advanced Medical Imaging.
Wang S, Cao G, Wang Y, Liao S, Wang Q, Shi J
Front Radiol. 2023; 1:781868.
PMID: 37492170
PMC: 10365109.
DOI: 10.3389/fradi.2021.781868.
Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography.
Shan H, Vimieiro R, Borges L, Vieira M, Wang G
Artif Intell Med. 2023; 142:102555.
PMID: 37316093
PMC: 10267506.
DOI: 10.1016/j.artmed.2023.102555.