Elastic Compliance of Fibrillar Assemblies in Type I Collagen
Overview
Authors
Affiliations
Fibrillary assemblies of Type I collagen find important applications in tissue engineering and as matrices for biophysical studies. The mechanical and structural properties of these structures are governed by factors such as protein concentration, temperature, pH and ionic strength. This study reports on an impedance based analysis of the elastic compliance of fibrillary assemblies of Type I collagen using quartz crystal microbalance with dissipation (QCM-D) at a fundamental frequency of 5 MHz and overtones (n = 3,5,7,9,11). Here, In situ partial fibrillation of the adsorbing collagen followed by its fibrillary assemblies on hydrophilic gold coated quartz surface have been crosslinked using Gallic acid (GA), Chromium (III) gallate (Cr-GA), Catechin (Cat), Tetrakis(hydroxymethyl)phosphonium sulfate (THPS) and Oxazolidine (Ox). This approach allows direct comparison of how viscoelastic properties track the structural evolution of the fiber and network length scales. The collagen crosslinking shows significant positive impact on the protein's mechanical behaviour and on the type of crosslinking agents used. The elastic modulus increases as collagen <GA < THPS < Cr-GA < Cat < Ox. Atomic force microscopic studies on the adsorbed collagen after cross linking confirmed the presence of fibrous assemblies. The results indicate stabilization and reinforcement through strong physical entanglement between the molecules of collagen as well as chemical interaction between collagen matrix and fibrils during cross linking. The elastic compliance evaluated from ΔDissipation/Δfreq. from QCM-D showed that cross linking with GA, Cr-GA and Ox resulted in flexible fibrillary network while agents like THPS and Cat showed elastic moduli similar to that of pure collagen. Results suggest that optimal collagen-crosslinking agent ratio and degree of crosslinking of collagen can help tailor the mechanical properties for specific applications in design of bio-materials of these composites.
Tong Q, Sun A, Wang Z, Li T, He X, Qian Y Mater Today Bio. 2022; 17:100459.
PMID: 36278142 PMC: 9583583. DOI: 10.1016/j.mtbio.2022.100459.
dAngelo M, Benedetti E, Tupone M, Catanesi M, Castelli V, Antonosante A Cells. 2019; 8(9).
PMID: 31491966 PMC: 6770247. DOI: 10.3390/cells8091036.