» Articles » PMID: 29844405

Amorphous Topological Superconductivity in a Shiba Glass

Overview
Journal Nat Commun
Specialty Biology
Date 2018 May 31
PMID 29844405
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Topological states of matter support quantised nondissipative responses and exotic quantum particles that cannot be accessed in common materials. The exceptional properties and application potential of topological materials have triggered a large-scale search for new realisations. Breaking away from the popular trend focusing almost exclusively on crystalline symmetries, we introduce the Shiba glass as a platform for amorphous topological quantum matter. This system consists of an ensemble of randomly distributed magnetic atoms on a superconducting surface. We show that subgap Yu-Shiba-Rusinov states on the magnetic moments form a topological superconducting phase at critical density despite a complete absence of spatial order. Experimental signatures of the amorphous topological state can be obtained by scanning tunnelling microscopy measurements probing the topological edge mode. Our discovery demonstrates the physical feasibility of amorphous topological quantum matter, presenting a concrete route to fabricating new topological systems from nontopological materials with random dopants.

Citing Articles

Anomalous topological waves in strongly amorphous scattering networks.

Zhang Z, Delplace P, Fleury R Sci Adv. 2023; 9(12):eadg3186.

PMID: 36947614 PMC: 11811877. DOI: 10.1126/sciadv.adg3186.


Correlation of Magnetism and Disordered Shiba Bands in Fe Monolayer Islands on Nb(110).

Goedecke J, Schneider L, Ma Y, That K, Wang D, Wiebe J ACS Nano. 2022; 16(9):14066-14074.

PMID: 36001503 PMC: 9527798. DOI: 10.1021/acsnano.2c03965.


Spatially dispersing Yu-Shiba-Rusinov states in the unconventional superconductor FeTeSe.

Chatzopoulos D, Cho D, Bastiaans K, Steffensen G, Bouwmeester D, Akbari A Nat Commun. 2021; 12(1):298.

PMID: 33436594 PMC: 7804303. DOI: 10.1038/s41467-020-20529-x.


Topological Weaire-Thorpe models of amorphous matter.

Marsal Q, Varjas D, Grushin A Proc Natl Acad Sci U S A. 2020; 117(48):30260-30265.

PMID: 33208535 PMC: 7720235. DOI: 10.1073/pnas.2007384117.

References
1.
Nadj-Perge S, Drozdov I, Li J, Chen H, Jeon S, Seo J . Topological matter. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science. 2014; 346(6209):602-7. DOI: 10.1126/science.1259327. View

2.
Oreg Y, Refael G, von Oppen F . Helical liquids and Majorana bound states in quantum wires. Phys Rev Lett. 2011; 105(17):177002. DOI: 10.1103/PhysRevLett.105.177002. View

3.
Mourik V, Zuo K, Frolov S, Plissard S, Bakkers E, Kouwenhoven L . Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science. 2012; 336(6084):1003-7. DOI: 10.1126/science.1222360. View

4.
Rontynen J, Ojanen T . Topological Superconductivity and High Chern Numbers in 2D Ferromagnetic Shiba Lattices. Phys Rev Lett. 2015; 114(23):236803. DOI: 10.1103/PhysRevLett.114.236803. View

5.
Klinovaja J, Stano P, Yazdani A, Loss D . Topological superconductivity and Majorana fermions in RKKY systems. Phys Rev Lett. 2013; 111(18):186805. DOI: 10.1103/PhysRevLett.111.186805. View