» Articles » PMID: 29797083

The Cellulose Synthase BcsA Plays a Role in Interactions of Salmonella Typhimurium with Acanthamoeba Castellanii Genotype T4

Overview
Journal Parasitol Res
Specialty Parasitology
Date 2018 May 26
PMID 29797083
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Pathogenic bacteria share their natural habitat with many other organisms such as animals, plants, insects, parasites and amoeba. Interactions between these organisms influence not only the life style of the host organisms, but also modulate bacterial physiology. Adaptation can include biofilm formation, capsule formation, and production of virulence factors. Although biofilm formation is a dominant mode of bacterial life in environmental settings, its role in host-pathogen interactions is not extensively studied. In this work, we investigated the role of molecular pathways involved in rdar biofilm formation in the interaction of Salmonella typhimurium with the Acanthamoeba castellanii genotype T4. Genes coding for the rdar biofilm activator CsgD, the cellulose synthase BcsA, and curli fimbriae subunits CsgBA were deleted from the genome of S. typhimurium. Assessment of interactions of wild-type and mutant strains of S. typhimurium with A. castellanii revealed that deletion of the cellulose synthase BcsA promoted association and uptake by A. castellanii, whereas the interactions with csgD and csgBA mutants were not changed. Our findings suggest that cellulose synthase BcsA inhibits the capabilities of S. typhimurium to associate with and invade into A. castellanii.

Citing Articles

A new understanding of Acanthamoeba castellanii: dispelling the role of bacterial pore-forming toxins in cyst formation and amoebicidal actions.

Yabrag A, Ullah N, Baryalai P, Ahmad I, Zlatkov N, Toh E Cell Death Discov. 2025; 11(1):66.

PMID: 39971918 PMC: 11839945. DOI: 10.1038/s41420-025-02345-8.


Colony phase variation switch modulates antimicrobial tolerance and biofilm formation in .

Mushtaq F, Nadeem A, Yabrag A, Bala A, Karah N, Zlatkov N Microbiol Spectr. 2024; 12(2):e0295623.

PMID: 38205963 PMC: 10845969. DOI: 10.1128/spectrum.02956-23.


Deciphering Target Protein Cascade in Biofilm using Genomic Data Mining, and Protein-protein Interaction.

Upadhyay A, Pal D, Kumar A Curr Genomics. 2023; 24(2):100-109.

PMID: 37994324 PMC: 10662377. DOI: 10.2174/1389202924666230815144126.


Two-component system ArcBA modulates cell motility and biofilm formation in .

Lv M, Ye S, Hu M, Xue Y, Liang Z, Zhou X Front Plant Sci. 2022; 13:1033192.

PMID: 36340374 PMC: 9634086. DOI: 10.3389/fpls.2022.1033192.


The role of Acanthamoeba spp. in biofilm communities: a systematic review.

Pinto L, Andriolo B, Hofling-Lima A, Freitas D Parasitol Res. 2021; 120(8):2717-2729.

PMID: 34292376 DOI: 10.1007/s00436-021-07240-6.


References
1.
Monteiro C, Saxena I, Wang X, Kader A, Bokranz W, Simm R . Characterization of cellulose production in Escherichia coli Nissle 1917 and its biological consequences. Environ Microbiol. 2009; 11(5):1105-16. DOI: 10.1111/j.1462-2920.2008.01840.x. View

2.
Ahmad I, Lamprokostopoulou A, Le Guyon S, Streck E, Barthel M, Peters V . Complex c-di-GMP signaling networks mediate transition between virulence properties and biofilm formation in Salmonella enterica serovar Typhimurium. PLoS One. 2011; 6(12):e28351. PMC: 3229569. DOI: 10.1371/journal.pone.0028351. View

3.
Kader A, Simm R, Gerstel U, Morr M, Romling U . Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol Microbiol. 2006; 60(3):602-16. DOI: 10.1111/j.1365-2958.2006.05123.x. View

4.
Rude R, Jackson G, Bier J, Sawyer T, Risty N . Survey of fresh vegetables for nematodes, amoebae, and Salmonella. J Assoc Off Anal Chem. 1984; 67(3):613-5. View

5.
Crull K, Rohde M, Westphal K, Loessner H, Wolf K, Felipe-Lopez A . Biofilm formation by Salmonella enterica serovar Typhimurium colonizing solid tumours. Cell Microbiol. 2011; 13(8):1223-33. DOI: 10.1111/j.1462-5822.2011.01612.x. View