» Articles » PMID: 29795756

Discovery of Orally Bioavailable Selective Inhibitors of the Sodium-Phosphate Cotransporter NaPi2a (SLC34A1)

Abstract

Sodium-phosphate cotransporter 2a, or NaPi2a (SLC34A1), is a solute-carrier (SLC) transporter located in the kidney proximal tubule that reabsorbs glomerular-filtered phosphate. Inhibition of NaPi2a may enhance urinary phosphate excretion and correct maladaptive mineral and hormonal derangements associated with increased cardiovascular risk in chronic kidney disease-mineral and bone disorder (CKD-MBD). To date, only nonselective NaPi inhibitors have been described. Herein, we detail the discovery of the first series of selective NaPi2a inhibitors, resulting from optimization of a high-throughput screening hit. The oral PK profile of inhibitor PF-06869206 () in rodents allows for the exploration of the pharmacology of selective NaPi2a inhibition.

Citing Articles

Beyond SGLT2: proximal tubule transporters as potential drug targets for chronic kidney disease.

Wagner C Nephrol Dial Transplant. 2025; 40(Supplement_1):i18-i28.

PMID: 39907544 PMC: 11795650. DOI: 10.1093/ndt/gfae211.


Pharmacology of Mammalian Na-Dependent Transporters of Inorganic Phosphate.

Wagner C Handb Exp Pharmacol. 2023; 283:285-317.

PMID: 36592227 DOI: 10.1007/164_2022_633.


Ablation of TRPC3 compromises bicarbonate and phosphate transporter activity in mice proximal tubular cells.

Shin S, Awuah Boadi E, Bandyopadhyay B Clin Exp Pharmacol Physiol. 2022; 50(3):247-255.

PMID: 36433745 PMC: 10258833. DOI: 10.1111/1440-1681.13741.


RGS14 regulates PTH- and FGF23-sensitive NPT2A-mediated renal phosphate uptake via binding to the NHERF1 scaffolding protein.

Friedman P, Sneddon W, Mamonova T, Montanez-Miranda C, Ramineni S, Harbin N J Biol Chem. 2022; 298(5):101836.

PMID: 35307350 PMC: 9035407. DOI: 10.1016/j.jbc.2022.101836.


Npt2a as a target for treating hyperphosphatemia.

Thomas L, Dominguez Rieg J, Rieg T Biochem Soc Trans. 2022; 50(1):439-446.

PMID: 34994388 PMC: 9022968. DOI: 10.1042/BST20211005.


References
1.
Scialla J, Wolf M . Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease. Nat Rev Nephrol. 2014; 10(5):268-78. DOI: 10.1038/nrneph.2014.49. View

2.
Jono S, McKee M, Murry C, Shioi A, Nishizawa Y, Mori K . Phosphate regulation of vascular smooth muscle cell calcification. Circ Res. 2000; 87(7):E10-7. DOI: 10.1161/01.res.87.7.e10. View

3.
Vervloet M, Sezer S, Massy Z, Johansson L, Cozzolino M, Fouque D . The role of phosphate in kidney disease. Nat Rev Nephrol. 2016; 13(1):27-38. DOI: 10.1038/nrneph.2016.164. View

4.
Vo T, Disthabanchong S . Are there ways to attenuate arterial calcification and improve cardiovascular outcomes in chronic kidney disease?. World J Cardiol. 2014; 6(5):216-26. PMC: 4062121. DOI: 10.4330/wjc.v6.i5.216. View

5.
Forster I, Hernando N, Biber J, Murer H . Phosphate transport kinetics and structure-function relationships of SLC34 and SLC20 proteins. Curr Top Membr. 2012; 70:313-56. DOI: 10.1016/B978-0-12-394316-3.00010-7. View