» Articles » PMID: 29795382

Dual Origin of Relapses in Retinoic-acid Resistant Acute Promyelocytic Leukemia

Abstract

Retinoic acid (RA) and arsenic target the t(15;17)(q24;q21) PML/RARA driver of acute promyelocytic leukemia (APL), their combination now curing over 95% patients. We report exome sequencing of 64 matched samples collected from patients at initial diagnosis, during remission, and following relapse after historical combined RA-chemotherapy treatments. A first subgroup presents a high incidence of additional oncogenic mutations disrupting key epigenetic or transcriptional regulators (primarily WT1) or activating MAPK signaling at diagnosis. Relapses retain these cooperating oncogenes and exhibit additional oncogenic alterations and/or mutations impeding therapy response (RARA, NT5C2). The second group primarily exhibits FLT3 activation at diagnosis, which is lost upon relapse together with most other passenger mutations, implying that these relapses derive from ancestral pre-leukemic PML/RARA-expressing cells that survived RA/chemotherapy. Accordingly, clonogenic activity of PML/RARA-immortalized progenitors ex vivo is only transiently affected by RA, but selectively abrogated by arsenic. Our studies stress the role of cooperating oncogenes in direct relapses and suggest that targeting pre-leukemic cells by arsenic contributes to its clinical efficacy.

Citing Articles

History of Developing Acute Promyelocytic Leukemia Treatment and Role of Promyelocytic Leukemia Bodies.

Bercier P, de The H Cancers (Basel). 2024; 16(7).

PMID: 38611029 PMC: 11011038. DOI: 10.3390/cancers16071351.


A machine learning model identifies M3-like subtype in AML based on PML/RARα targets.

Shao T, Li J, Su M, Yang C, Ma Y, Lv C iScience. 2024; 27(2):108947.

PMID: 38322990 PMC: 10844831. DOI: 10.1016/j.isci.2024.108947.


The PML hub: An emerging actor of leukemia therapies.

Rerolle D, de The H J Exp Med. 2023; 220(8).

PMID: 37382966 PMC: 10309189. DOI: 10.1084/jem.20221213.


[Vitamins and Immune System Health].

Kong W, Lu X, Hou L, Sun X, Sun G, Chen L Sichuan Da Xue Xue Bao Yi Xue Ban. 2023; 54(1):7-13.

PMID: 36647636 PMC: 10409034. DOI: 10.12182/20230160107.


Tetra-arsenic tetra-sulfide enhances NK-92MI mediated cellular immunotherapy in all-trans retinoic acid-resistant acute promyelocytic leukemia.

Liu Y, Jia Y, Liu Y, Chen X, Zhang M Invest New Drugs. 2022; 40(6):1231-1243.

PMID: 36287298 DOI: 10.1007/s10637-022-01313-8.


References
1.
Auton A, Brooks L, Durbin R, Garrison E, Kang H, Korbel J . A global reference for human genetic variation. Nature. 2015; 526(7571):68-74. PMC: 4750478. DOI: 10.1038/nature15393. View

2.
Riva L, Ronchini C, Bodini M, Lo-Coco F, Lavorgna S, Ottone T . Acute promyelocytic leukemias share cooperative mutations with other myeloid-leukemia subgroups. Blood Cancer J. 2014; 4:e195. PMC: 3972704. DOI: 10.1038/bcj.2014.19. View

3.
Iaccarino L, Ottone T, Divona M, Cicconi L, Cairoli R, Voso M . Mutations affecting both the rearranged and the unrearranged PML alleles in refractory acute promyelocytic leukaemia. Br J Haematol. 2016; 172(6):909-13. DOI: 10.1111/bjh.13910. View

4.
Korf K, Wodrich H, Haschke A, Ocampo C, Harder L, Gieseke F . The PML domain of PML-RARα blocks senescence to promote leukemia. Proc Natl Acad Sci U S A. 2014; 111(33):12133-8. PMC: 4143011. DOI: 10.1073/pnas.1412944111. View

5.
Madan V, Shyamsunder P, Han L, Mayakonda A, Nagata Y, Sundaresan J . Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia. Leukemia. 2016; 30(8):1672-81. PMC: 4972641. DOI: 10.1038/leu.2016.69. View