» Articles » PMID: 29791163

Relationship Between Excited State Lifetime and Isomerization Quantum Yield in Animal Rhodopsins: Beyond the One-Dimensional Landau-Zener Model

Overview
Specialty Chemistry
Date 2018 May 24
PMID 29791163
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

We show that the speed of the chromophore photoisomerization of animal rhodopsins is not a relevant control knob for their light sensitivity. This result is at odds with the momentum-driven tunnelling rationale (i.e., assuming a one-dimensional Landau-Zener model for the decay: Zener, C. Non-Adiabatic Crossing of Energy Levels. Proc. R. Soc. London, Ser. A 1932, 137 (833), 696-702) holding that a faster nuclear motion through the conical intersection translates into a higher quantum yield and, thus, light sensitivity. Instead, a model based on the phase-matching of specific excited state vibrational modes should be considered. Using extensive semiclassical hybrid quantum mechanics/molecular mechanics trajectory computations to simulate the photoisomerization of three animal rhodopsin models (visual rhodopsin, squid rhodopsin and human melanopsin), we also demonstrate that phase-matching between three different modes (the reactive carbon and hydrogen twisting coordinates and the bond length alternation mode) is required to achieve high quantum yields. In fact, such "phase-matching" mechanism explains the computational results and provides a tool for the prediction of the photoisomerization outcome in retinal proteins.

Citing Articles

In-silico predicted mouse melanopsins with blue spectral shifts deliver efficient subcellular signaling.

Wijayaratna D, Sacchetta F, Pedraza-Gonzalez L, Fanelli F, Sugihara T, Koyanagi M Cell Commun Signal. 2024; 22(1):394.

PMID: 39118111 PMC: 11312219. DOI: 10.1186/s12964-024-01753-0.


Tracking the conical intersection dynamics for the photoinduced Jahn-Teller switch of a Mn(iii) complex.

Phelps R, Agapaki E, Brechin E, Johansson J Chem Sci. 2024; 15(30):11956-11964.

PMID: 39092124 PMC: 11290422. DOI: 10.1039/d4sc00145a.


Retinal photoisomerization versus counterion protonation in light and dark-adapted bacteriorhodopsin and its primary photoproduct.

Malakar P, Gholami S, Aarabi M, Rivalta I, Sheves M, Garavelli M Nat Commun. 2024; 15(1):2136.

PMID: 38459010 PMC: 10923925. DOI: 10.1038/s41467-024-46061-w.


Control of Protonated Schiff Base Excited State Decay within Visual Protein Mimics: A Unified Model for Retinal Chromophores.

Demoulin B, Maiuri M, Berbasova T, Geiger J, Borhan B, Garavelli M Chemistry. 2021; 27(66):16389-16400.

PMID: 34653286 PMC: 8906800. DOI: 10.1002/chem.202102383.


a-ARM: Automatic Rhodopsin Modeling with Chromophore Cavity Generation, Ionization State Selection, and External Counterion Placement.

Pedraza-Gonzalez L, De Vico L, Mari N M, Fanelli F, Olivucci M J Chem Theory Comput. 2019; 15(5):3134-3152.

PMID: 30916955 PMC: 7141608. DOI: 10.1021/acs.jctc.9b00061.


References
1.
Mathies R . Photons, femtoseconds and dipolar interactions: a molecular picture of the primary events in vision. Novartis Found Symp. 1999; 224:70-84; discussion 84-101. DOI: 10.1002/9780470515693.ch6. View

2.
Garavelli M, Bernardi F, Merchan M, Robb M, Olivucci M . Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization. Proc Natl Acad Sci U S A. 2000; 97(17):9379-84. PMC: 16872. DOI: 10.1073/pnas.97.17.9379. View

3.
Kobayashi T, Saito T, Ohtani H . Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature. 2001; 414(6863):531-4. DOI: 10.1038/35107042. View

4.
Kandori H, Shichida Y, Yoshizawa T . Photoisomerization in rhodopsin. Biochemistry (Mosc). 2001; 66(11):1197-209. DOI: 10.1023/a:1013123016803. View

5.
Kukura P, McCamant D, Yoon S, Wandschneider D, Mathies R . Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science. 2005; 310(5750):1006-9. DOI: 10.1126/science.1118379. View