» Articles » PMID: 29765316

Noradrenergic Dysfunction in Alzheimer's and Parkinson's Diseases-An Overview of Imaging Studies

Overview
Specialty Geriatrics
Date 2018 May 17
PMID 29765316
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Noradrenergic dysfunction contributes to cognitive impairment in Alzheimer's Disease (AD) and Parkinson's Disease (PD). Conventional therapeutic strategies seek to enhance cholinergic and dopaminergic neurotransmission in AD and PD, respectively, and few studies have examined noradrenergic dysfunction as a target for medication development. We review the literature of noradrenergic dysfunction in AD and PD with a focus on human imaging studies that implicate the locus coeruleus (LC) circuit. The LC sends noradrenergic projections diffusely throughout the cerebral cortex and plays a critical role in attention, learning, working memory, and cognitive control. The LC undergoes considerable degeneration in both AD and PD. Advances in magnetic resonance imaging have facilitated greater understanding of how structural and functional alteration of the LC may contribute to cognitive decline in AD and PD. We discuss the potential roles of the noradrenergic system in the pathogenesis of AD and PD with an emphasis on postmortem anatomical studies, structural MRI studies, and functional MRI studies, where we highlight changes in LC connectivity with the default mode network (DMN). LC degeneration may accompany deficient capacity in suppressing DMN activity and increasing saliency and task control network activities to meet behavioral challenges. We finish by proposing potential and new directions of research to address noradrenergic dysfunction in AD and PD.

Citing Articles

Respiratory Dysfunction in Alzheimer's Disease-Consequence or Underlying Cause? Applying Animal Models to the Study of Respiratory Malfunctions.

Wrzesien A, Andrzejewski K, Jampolska M, Kaczynska K Int J Mol Sci. 2024; 25(4).

PMID: 38397004 PMC: 10888758. DOI: 10.3390/ijms25042327.


Microstructural integrity of the locus coeruleus and its tracts reflect noradrenergic degeneration in Alzheimer's disease and Parkinson's disease.

Lin C, Frigerio I, Bol J, Bouwman M, Wesseling A, Dahl M Transl Neurodegener. 2024; 13(1):9.

PMID: 38336865 PMC: 10854137. DOI: 10.1186/s40035-024-00400-5.


Investigating the spontaneous brain activities of patients with subjective cognitive decline and mild cognitive impairment: an amplitude of low-frequency fluctuation functional magnetic resonance imaging study.

Gao Y, Tian S, Tang Y, Yang X, Dou W, Wang T Quant Imaging Med Surg. 2023; 13(12):8557-8570.

PMID: 38106284 PMC: 10722053. DOI: 10.21037/qims-23-808.


Relationships of in vivo brain norepinephrine transporter and age, BMI, and gender.

Koohsari S, Sadabad F, Pittman B, Gallezot J, Carson R, van Dyck C Synapse. 2023; 77(5):e22279.

PMID: 37382240 PMC: 10416616. DOI: 10.1002/syn.22279.


Acetylcholine and noradrenaline differentially regulate hippocampus-dependent spatial learning and memory.

de Leo G, Gulino R, Coradazzi M, Leanza G Brain Commun. 2023; 5(1):fcac338.

PMID: 36632183 PMC: 9825812. DOI: 10.1093/braincomms/fcac338.


References
1.
Hu S, Ide J, Zhang S, Li C . Anticipating conflict: Neural correlates of a Bayesian belief and its motor consequence. Neuroimage. 2015; 119:286-95. PMC: 4564311. DOI: 10.1016/j.neuroimage.2015.06.032. View

2.
Lee E, Sen S, Eslinger P, Wagner D, Shaffer M, Kong L . Early cortical gray matter loss and cognitive correlates in non-demented Parkinson's patients. Parkinsonism Relat Disord. 2013; 19(12):1088-93. PMC: 3858507. DOI: 10.1016/j.parkreldis.2013.07.018. View

3.
Helmich R, Thaler A, van Nuenen B, Gurevich T, Mirelman A, Marder K . Reorganization of corticostriatal circuits in healthy G2019S LRRK2 carriers. Neurology. 2014; 84(4):399-406. PMC: 4336002. DOI: 10.1212/WNL.0000000000001189. View

4.
Apicella A, Wickersham I, Seung H, Shepherd G . Laminarly orthogonal excitation of fast-spiking and low-threshold-spiking interneurons in mouse motor cortex. J Neurosci. 2012; 32(20):7021-33. PMC: 3377057. DOI: 10.1523/JNEUROSCI.0011-12.2012. View

5.
Enochs W, Petherick P, Bogdanova A, Mohr U, Weissleder R . Paramagnetic metal scavenging by melanin: MR imaging. Radiology. 1997; 204(2):417-23. DOI: 10.1148/radiology.204.2.9240529. View