» Articles » PMID: 29750195

Utilizing Sensory Prediction Errors for Movement Intention Decoding: A New Methodology

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2018 May 12
PMID 29750195
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

We propose a new methodology for decoding movement intentions of humans. This methodology is motivated by the well-documented ability of the brain to predict sensory outcomes of self-generated and imagined actions using so-called forward models. We propose to subliminally stimulate the sensory modality corresponding to a user's intended movement, and decode a user's movement intention from his electroencephalography (EEG), by decoding for prediction errors-whether the sensory prediction corresponding to a user's intended movement matches the subliminal sensory stimulation we induce. We tested our proposal in a binary wheelchair turning task in which users thought of turning their wheelchair either left or right. We stimulated their vestibular system subliminally, toward either the left or the right direction, using a galvanic vestibular stimulator and show that the decoding for prediction errors from the EEG can radically improve movement intention decoding performance. We observed an 87.2% median single-trial decoding accuracy across tested participants, with zero user training, within 96 ms of the stimulation, and with no additional cognitive load on the users because the stimulation was subliminal.

Citing Articles

Understanding common human driving semantics for autonomous vehicles.

Xia Y, Geng M, Chen Y, Sun S, Liao C, Zhu Z Patterns (N Y). 2023; 4(7):100730.

PMID: 37521046 PMC: 10382946. DOI: 10.1016/j.patter.2023.100730.


Sparse Logistic Regression-Based EEG Channel Optimization Algorithm for Improved Universality across Participants.

Shi Y, Li Y, Koike Y Bioengineering (Basel). 2023; 10(6).

PMID: 37370595 PMC: 10295307. DOI: 10.3390/bioengineering10060664.


A CW-CNN regression model-based real-time system for virtual hand control.

Qin Z, He Z, Li Y, Saetia S, Koike Y Front Neurorobot. 2023; 16:1072365.

PMID: 36620487 PMC: 9812573. DOI: 10.3389/fnbot.2022.1072365.


Non-von Neumann multi-input spike signal processing enabled by an artificial synaptic multiplexer.

Ho D, Roe D, Choi Y, Kim S, Choi Y, Kim D Sci Adv. 2022; 8(25):eabn1838.

PMID: 35731885 PMC: 9217087. DOI: 10.1126/sciadv.abn1838.


Binary Semantic Classification Using Cortical Activation with Pavlovian-Conditioned Vestibular Responses in Healthy and Locked-In Individuals.

Yoshimura N, Umetsu K, Tonin A, Maruyama Y, Harada K, Rana A Cereb Cortex Commun. 2021; 2(3):tgab046.

PMID: 34447933 PMC: 8382900. DOI: 10.1093/texcom/tgab046.


References
1.
SanMiguel I, Saupe K, Schroger E . I know what is missing here: electrophysiological prediction error signals elicited by omissions of predicted "what" but not "when". Front Hum Neurosci. 2013; 7:407. PMC: 3725431. DOI: 10.3389/fnhum.2013.00407. View

2.
Stefanics G, Astikainen P, Czigler I . Visual mismatch negativity (vMMN): a prediction error signal in the visual modality. Front Hum Neurosci. 2015; 8:1074. PMC: 4302941. DOI: 10.3389/fnhum.2014.01074. View

3.
Aymerich-Franch L, Petit D, Kheddar A, Ganesh G . Forward modelling the rubber hand: illusion of ownership modifies motor-sensory predictions by the brain. R Soc Open Sci. 2016; 3(8):160407. PMC: 5108970. DOI: 10.1098/rsos.160407. View

4.
Pfurtscheller G, Lopes da Silva F . Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999; 110(11):1842-57. DOI: 10.1016/s1388-2457(99)00141-8. View

5.
Muller-Putz G, Schwarz A, Pereira J, Ofner P . From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach. Prog Brain Res. 2016; 228:39-70. DOI: 10.1016/bs.pbr.2016.04.017. View