6.
Fini M, Tyler W
. Transcranial focused ultrasound: a new tool for non-invasive neuromodulation. Int Rev Psychiatry. 2017; 29(2):168-177.
DOI: 10.1080/09540261.2017.1302924.
View
7.
Rakhshaei R, Namazi H
. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater Sci Eng C Mater Biol Appl. 2017; 73:456-464.
DOI: 10.1016/j.msec.2016.12.097.
View
8.
Vimala K, Shanthi K, Sundarraj S, Kannan S
. Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (FA) modified zinc oxide nanosheet. J Colloid Interface Sci. 2016; 488:92-108.
DOI: 10.1016/j.jcis.2016.10.067.
View
9.
Karimi M, Ghasemi A, Zangabad P, Rahighi R, Moosavi Basri S, Mirshekari H
. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016; 45(5):1457-501.
PMC: 4775468.
DOI: 10.1039/c5cs00798d.
View
10.
Shi Y, Ma C, Du Y, Yu G
. Microwave-responsive polymeric core-shell microcarriers for high-efficiency controlled drug release. J Mater Chem B. 2020; 5(19):3541-3549.
DOI: 10.1039/c7tb00235a.
View
11.
Huang X, Wang X, Wang S, Yang J, Zhong L, Pan J
. UV and dark-triggered repetitive release and encapsulation of benzophenone-3 from biocompatible ZnO nanoparticles potential for skin protection. Nanoscale. 2013; 5(12):5596-601.
DOI: 10.1039/c3nr00090g.
View
12.
Kong F, Huang X, Yue D, Pan J
. A biocompatible and magnetic nanocarrier with a safe UV-initiated docetaxel release and cancer secretion removal properties increases therapeutic potential for skin cancer. Mater Sci Eng C Mater Biol Appl. 2017; 76:579-585.
DOI: 10.1016/j.msec.2017.03.078.
View
13.
Liu J, Zhao Y, Ge W, Zhang P, Liu X, Zhang W
. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways. Oncotarget. 2017; 8(26):42673-42692.
PMC: 5522097.
DOI: 10.18632/oncotarget.17349.
View
14.
Fouladi F, Steffen K, Mallik S
. Enzyme-Responsive Liposomes for the Delivery of Anticancer Drugs. Bioconjug Chem. 2017; 28(4):857-868.
PMC: 5509414.
DOI: 10.1021/acs.bioconjchem.6b00736.
View
15.
Saptarshi S, Duschl A, Lopata A
. Biological reactivity of zinc oxide nanoparticles with mammalian test systems: an overview. Nanomedicine (Lond). 2015; 10(13):2075-92.
DOI: 10.2217/nnm.15.44.
View
16.
Ivask A, Juganson K, Bondarenko O, Mortimer M, Aruoja V, Kasemets K
. Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review. Nanotoxicology. 2013; 8 Suppl 1:57-71.
DOI: 10.3109/17435390.2013.855831.
View
17.
Muhammad F, Guo M, Qi W, Sun F, Wang A, Guo Y
. pH-Triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J Am Chem Soc. 2011; 133(23):8778-81.
DOI: 10.1021/ja200328s.
View
18.
Wang Y, Song S, Liu J, Liu D, Zhang H
. ZnO-functionalized upconverting nanotheranostic agent: multi-modality imaging-guided chemotherapy with on-demand drug release triggered by pH. Angew Chem Int Ed Engl. 2014; 54(2):536-40.
DOI: 10.1002/anie.201409519.
View
19.
Kanmani P, Rhim J
. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr Polym. 2014; 106:190-9.
DOI: 10.1016/j.carbpol.2014.02.007.
View
20.
Ye D, Ma Y, Zhao W, Cao H, Kong J, Xiong H
. ZnO-Based Nanoplatforms for Labeling and Treatment of Mouse Tumors without Detectable Toxic Side Effects. ACS Nano. 2016; 10(4):4294-300.
DOI: 10.1021/acsnano.5b07846.
View