» Articles » PMID: 29731745

Autophosphorylation Mechanism of the Ser/Thr Kinase Stk1 From

Overview
Journal Front Microbiol
Specialty Microbiology
Date 2018 May 8
PMID 29731745
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The eukaryotic-like Ser/Thr kinase Stk1 is crucial for virulence, cell wall biosynthesis, and drug susceptibility in methicillin-resistant () (MRSA). Importantly, MRSA lacking Stk1 become sensitive to β-lactam antibiotics, implying that Stk1 could be an alternative target for combination therapy. However, the autophosphorylation mechanism of Stk1 remains elusive. Using a phosphoproteomic study, we identified six phosphorylated activation loop residues (Ser159, Thr161, Ser162, Thr164, Thr166, and Thr172) of Stk1, which are also phosphorylated . We further showed that autophosphorylation of Thr172 in the GT/S motif is essential for self-activation and kinase activity of Stk1 kinase domain (Stk1-KD), whereas the autophosphorylation of other activation loop serines/threonines are required for the optimal kinase activity of Stk1-KD. Moreover, substitution of the activation loop serines/threonines impaired autophosphorylation activity of kinase variants, while T172A and T172D variants were unable to autophosphorylate in the cellular content, underlining the essential role of Thr172 for Stk1 activity . This study provides insights into molecular basis for regulation of Stk1 activity from .

Citing Articles

Insights into Kinases of ESKAPE Pathogens for Therapeutic Interventions.

Mody D, Joshi P, Antil M, Gupta R, Gupta V Cardiovasc Hematol Agents Med Chem. 2024; 22(3):276-297.

PMID: 39403051 DOI: 10.2174/0118715257267497231128093529.


Inhibitors targeting the autophosphorylation of serine/threonine kinase of show potent antimicrobial activity.

Li H, Li T, Hu Q, Yao Z, Li L, Huang Q Front Microbiol. 2022; 13:990091.

PMID: 36118193 PMC: 9478340. DOI: 10.3389/fmicb.2022.990091.


Identification and Evaluation of Brominated Carbazoles as a Novel Antibiotic Adjuvant Scaffold in MRSA.

Berndsen R, Cunningham T, Kaelin L, Callender M, Boldog W, Viering B ACS Med Chem Lett. 2022; 13(3):483-491.

PMID: 35295086 PMC: 8919279. DOI: 10.1021/acsmedchemlett.1c00680.


Transcriptome Data and Metabolic Modelling Investigate the Interplay of Ser/Thr Kinase PknB, Its Phosphatase Stp, the Regulon and the Operon for Metabolic Adaptation.

Liang C, Rios-Miguel A, Jarick M, Neurgaonkar P, Girard M, Francois P Microorganisms. 2021; 9(10).

PMID: 34683468 PMC: 8537086. DOI: 10.3390/microorganisms9102148.


β-Lactams against the Fortress of the Gram-Positive Bacterium.

Fisher J, Mobashery S Chem Rev. 2020; 121(6):3412-3463.

PMID: 33373523 PMC: 8653850. DOI: 10.1021/acs.chemrev.0c01010.


References
1.
Manuse S, Fleurie A, Zucchini L, Lesterlin C, Grangeasse C . Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis. FEMS Microbiol Rev. 2015; 40(1):41-56. DOI: 10.1093/femsre/fuv041. View

2.
Cai X, Zheng W, Li Z . High-Throughput Screening Strategies for the Development of Anti-Virulence Inhibitors Against Staphylococcus aureus. Curr Med Chem. 2017; 26(13):2297-2312. DOI: 10.2174/0929867324666171121102829. View

3.
Zschiedrich C, Keidel V, Szurmant H . Molecular Mechanisms of Two-Component Signal Transduction. J Mol Biol. 2016; 428(19):3752-75. PMC: 5023499. DOI: 10.1016/j.jmb.2016.08.003. View

4.
Beltramini A, Mukhopadhyay C, Pancholi V . Modulation of cell wall structure and antimicrobial susceptibility by a Staphylococcus aureus eukaryote-like serine/threonine kinase and phosphatase. Infect Immun. 2009; 77(4):1406-16. PMC: 2663143. DOI: 10.1128/IAI.01499-08. View

5.
Johnson L, Noble M, Owen D . Active and inactive protein kinases: structural basis for regulation. Cell. 1996; 85(2):149-58. DOI: 10.1016/s0092-8674(00)81092-2. View