» Articles » PMID: 29727661

Spliceosome Profiling Visualizes Operations of a Dynamic RNP at Nucleotide Resolution

Overview
Journal Cell
Publisher Cell Press
Specialty Cell Biology
Date 2018 May 5
PMID 29727661
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Tools to understand how the spliceosome functions in vivo have lagged behind advances in the structural biology of the spliceosome. Here, methods are described to globally profile spliceosome-bound pre-mRNA, intermediates, and spliced mRNA at nucleotide resolution. These tools are applied to three yeast species that span 600 million years of evolution. The sensitivity of the approach enables the detection of canonical and non-canonical events, including interrupted, recursive, and nested splicing. This application of statistical modeling uncovers independent roles for the size and position of the intron and the number of introns per transcript in substrate progression through the two catalytic stages. These include species-specific inputs suggestive of spliceosome-transcriptome coevolution. Further investigations reveal the ATP-dependent discard of numerous endogenous substrates after spliceosome assembly in vivo and connect this discard to intron retention, a form of splicing regulation. Spliceosome profiling is a quantitative, generalizable global technology used to investigate an RNP central to eukaryotic gene expression.

Citing Articles

Structures of aberrant spliceosome intermediates on their way to disassembly.

Soni K, Horvath A, Dybkov O, Schwan M, Trakansuebkul S, Flemming D Nat Struct Mol Biol. 2025; .

PMID: 39833470 DOI: 10.1038/s41594-024-01480-7.


Decoding protein-RNA interactions using CLIP-based methodologies.

Xiang J, Schafer D, Rothamel K, Yeo G Nat Rev Genet. 2024; 25(12):879-895.

PMID: 38982239 DOI: 10.1038/s41576-024-00749-3.


GPATCH4 regulates rRNA and snRNA 2'-O-methylation in both DHX15-dependent and DHX15-independent manners.

Kanwal N, Krogh N, Memet I, Lemus-Diaz N, Thome C, Welp L Nucleic Acids Res. 2023; 52(4):1953-1974.

PMID: 38113271 PMC: 10939407. DOI: 10.1093/nar/gkad1202.


Intrinsic mesoscale properties of a Polycomb protein underpin heterochromatin fidelity.

Lee S, Abini-Agbomson S, Perry D, Goodman A, Rao B, Huang M Nat Struct Mol Biol. 2023; 30(7):891-901.

PMID: 37217653 DOI: 10.1038/s41594-023-01000-z.


Potential Anti-Tumor Activity of Nardoguaianone L Isolated from DC. in SW1990 Cells.

Sang C, Zheng Y, Ma L, Wang K, Wang C, Chai T Molecules. 2022; 27(21).

PMID: 36364317 PMC: 9656649. DOI: 10.3390/molecules27217490.


References
1.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View

2.
Luukkonen B, Seraphin B . The role of branchpoint-3' splice site spacing and interaction between intron terminal nucleotides in 3' splice site selection in Saccharomyces cerevisiae. EMBO J. 1997; 16(4):779-92. PMC: 1169679. DOI: 10.1093/emboj/16.4.779. View

3.
Martin A, Schneider S, Schwer B . Prp43 is an essential RNA-dependent ATPase required for release of lariat-intron from the spliceosome. J Biol Chem. 2002; 277(20):17743-50. DOI: 10.1074/jbc.M200762200. View

4.
Awan A, Manfredo A, Pleiss J . Lariat sequencing in a unicellular yeast identifies regulated alternative splicing of exons that are evolutionarily conserved with humans. Proc Natl Acad Sci U S A. 2013; 110(31):12762-7. PMC: 3732940. DOI: 10.1073/pnas.1218353110. View

5.
Gonzalez-Hilarion S, Paulet D, Lee K, Hon C, Lechat P, Mogensen E . Intron retention-dependent gene regulation in Cryptococcus neoformans. Sci Rep. 2016; 6:32252. PMC: 5006051. DOI: 10.1038/srep32252. View