» Articles » PMID: 29725152

Selective Sorption of Uranium from Aqueous Solution by Graphene Oxide-modified Materials

Overview
Publisher Springer
Specialty Chemistry
Date 2018 May 5
PMID 29725152
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The effect of competing ions on the sorption behaviour of uranium onto carboxyl-functionalised graphene oxide (COOH-GO) were studied in batch experiments in comparison to graphene oxide (GO) and graphite. The effect of increasing the abundance of select chemical functional groups, such as carboxyl groups, on the selectivity of U sorption was investigated. In the course of the study, COOH-GO demonstrated superior performance as a sorbent material for the selective removal of uranyl ions from aqueous solution with a distribution coefficient of 3.72 ± 0.19 × 10 mL g in comparison to 3.97 ± 0.5 × 10 and 2.68 ± 0.2 × 10 mL g for GO and graphite, respectively.

Citing Articles

How to Evaluate the Chemical Affinity of -OH and -COOH Functional Groups Toward U(VI).

Cui X, Xie X, Li Y, Chen Y, Ma Y, Yang S Molecules. 2024; 29(23).

PMID: 39683773 PMC: 11643956. DOI: 10.3390/molecules29235614.


Multi-Walled Carbon Nanotubes Functionalized with Hydroxamic Acid Derivatives for the Removal of Lead from Wastewater: Kinetics, Isotherm, and Thermodynamic Studies.

Al-Faiyz Y, Gouda M Polymers (Basel). 2022; 14(18).

PMID: 36146015 PMC: 9504277. DOI: 10.3390/polym14183870.


Synthesis of Functionalized Carboxylated Graphene Oxide for the Remediation of Pb and Cr Contaminated Water.

Farooq S, Aziz H, Ali S, Murtaza G, Rizwan M, Saleem M Int J Environ Res Public Health. 2022; 19(17).

PMID: 36078326 PMC: 9518387. DOI: 10.3390/ijerph191710610.


Effects of Impregnated Amidophosphonate Ligand Concentration on the Uranium Extraction Behavior of Mesoporous Silica.

Dressler A, Leydier A, Grandjean A Molecules. 2022; 27(14).

PMID: 35889214 PMC: 9316337. DOI: 10.3390/molecules27144342.


Effective Elimination of Contaminant Antibiotics Using High-Surface-Area Magnetic-Functionalized Graphene Nanocomposites Developed from Plastic Waste.

Elessawy N, Gouda M, Ali S, Salerno M, Eldin M Materials (Basel). 2020; 13(7).

PMID: 32224957 PMC: 7177265. DOI: 10.3390/ma13071517.

References
1.
Romanchuk A, Slesarev A, Kalmykov S, Kosynkin D, Tour J . Graphene oxide for effective radionuclide removal. Phys Chem Chem Phys. 2013; 15(7):2321-7. DOI: 10.1039/c2cp44593j. View

2.
Wu Q, Lan J, Wang C, Xiao C, Zhao Y, Wei Y . Understanding the bonding nature of uranyl ion and functionalized graphene: a theoretical study. J Phys Chem A. 2014; 118(11):2149-58. DOI: 10.1021/jp500924a. View

3.
Cancado L, Jorio A, Ferreira E, Stavale F, Achete C, Capaz R . Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011; 11(8):3190-6. DOI: 10.1021/nl201432g. View

4.
Sun Y, Yang S, Chen Y, Ding C, Cheng W, Wang X . Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol. 2015; 49(7):4255-62. DOI: 10.1021/es505590j. View

5.
Fesenko S, Jacob P, Ulanovsky A, Chupov A, Bogdevich I, Sanzharova N . Justification of remediation strategies in the long term after the Chernobyl accident. J Environ Radioact. 2010; 119:39-47. DOI: 10.1016/j.jenvrad.2010.08.012. View