» Articles » PMID: 29720425

Canonical TGF-β Signaling Pathway Represses Human NK Cell Metabolism

Overview
Journal J Immunol
Date 2018 May 4
PMID 29720425
Citations 88
Authors
Affiliations
Soon will be listed here.
Abstract

Cytokines stimulate rapid metabolic changes in human NK cells, including increases in both glycolysis and oxidative phosphorylation pathways. However, how these are subsequently regulated is not known. In this study, we demonstrate that TGF-β can inhibit many of these metabolic changes, including oxidative phosphorylation, glycolytic capacity, and respiratory capacity. TGF-β also inhibited cytokine-induced expression of the transferrin nutrient receptor CD71. In contrast to a recent report on murine NK cells, TGF-β-mediated suppression of these metabolic responses did not involve the inhibition of the metabolic regulator mTORC1. Inhibition of the canonical TGF-β signaling pathway was able to restore almost all metabolic and functional responses that were inhibited by TGF-β. These data suggest that pharmacological inhibition of TGF-β could provide a metabolic advantage to NK cells that is likely to result in improved functional responses. This has important implications for NK cell-based cancer immunotherapies.

Citing Articles

The circular RNA circbabo(5,6,7,8S) regulates lipid metabolism and neuronal integrity via TGF-β/ROS/JNK/SREBP signaling axis in Drosophila.

Sheng J, Zhang X, Liang W, Lyu J, Zhang B, Min J BMC Biol. 2025; 23(1):69.

PMID: 40038674 PMC: 11881384. DOI: 10.1186/s12915-025-02175-1.


Fate and long-lasting therapeutic effects of mesenchymal stromal/stem-like cells: mechanistic insights.

Hoseinzadeh A, Esmaeili S, Sahebi R, Melak A, Mahmoudi M, Hasannia M Stem Cell Res Ther. 2025; 16(1):33.

PMID: 39901306 PMC: 11792531. DOI: 10.1186/s13287-025-04158-z.


AXL: shapers of tumor progression and immunosuppressive microenvironments.

Liu Y, Xu L, Dou Y, He Y Mol Cancer. 2025; 24(1):11.

PMID: 39799359 PMC: 11724481. DOI: 10.1186/s12943-024-02210-9.


The Role of Natural Killer Cells and Their Metabolism in HIV-1 Infection.

Naidoo K, Altfeld M Viruses. 2024; 16(10).

PMID: 39459918 PMC: 11512232. DOI: 10.3390/v16101584.


Involvement of tumor immune microenvironment metabolic reprogramming in colorectal cancer progression, immune escape, and response to immunotherapy.

Nicolini A, Ferrari P Front Immunol. 2024; 15:1353787.

PMID: 39119332 PMC: 11306065. DOI: 10.3389/fimmu.2024.1353787.