» Articles » PMID: 29714749

Multimodality Endoscopic Optical Coherence Tomography and Fluorescence Imaging Technology for Visualization of Layered Architecture and Subsurface Microvasculature

Overview
Journal Opt Lett
Specialty Ophthalmology
Date 2018 May 2
PMID 29714749
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Endoscopic imaging technologies, such as endoscopic optical coherence tomography (OCT) and near-infrared fluorescence, have been used to investigate vascular and morphological changes as hallmarks of early cancer in the gastrointestinal tract. Here we developed a high-speed multimodality endoscopic OCT and fluorescence imaging system. Using this system, the architectural morphology and vasculature of the rectum wall were obtained simultaneously from a Sprague Dawley rat in vivo. This multimodality imaging strategy in a single imaging system permits the use of a single imaging probe, thereby improving prognosis by early detection and reducing costs.

Citing Articles

Multimodal fiber probe for simultaneous mid-infrared and Raman spectroscopy.

Novikov A, Perevoschikov S, Usenov I, Sakharova T, Artyushenko V, Bogomolov A Sci Rep. 2024; 14(1):7430.

PMID: 38548800 PMC: 10978856. DOI: 10.1038/s41598-024-57539-4.


GPU-accelerated image registration algorithm in ophthalmic optical coherence tomography.

Bian H, Wang J, Hong C, Liu L, Ji R, Cao S Biomed Opt Express. 2023; 14(1):194-207.

PMID: 36698653 PMC: 9841998. DOI: 10.1364/BOE.479343.


Triple-modality co-registered endoscope featuring wide-field reflectance imaging, and high-resolution multiphoton and optical coherence microscopy.

Vega D, Galvez D, Romano G, Pham N, Cordova R, Aitken M Proc SPIE Int Soc Opt Eng. 2022; 1(4).

PMID: 36325111 PMC: 9625855. DOI: 10.1117/1.jom.1.4.044502.


Advances in Endoscopic Photoacoustic Imaging.

Li Y, Lu G, Zhou Q, Chen Z Photonics. 2022; 8(7).

PMID: 35252433 PMC: 8896876. DOI: 10.3390/photonics8070281.


Double-Clad Fiber-Based Multifunctional Biosensors and Multimodal Bioimaging Systems: Technology and Applications.

Beaudette K, Li J, Lamarre J, Majeau L, Boudoux C Biosensors (Basel). 2022; 12(2).

PMID: 35200350 PMC: 8869713. DOI: 10.3390/bios12020090.


References
1.
Iseki K, Tatsuta M, Iishi H, Sakai N, Yano H, Ishiguro S . Effectiveness of the near-infrared electronic endoscope for diagnosis of the depth of involvement of gastric cancers. Gastrointest Endosc. 2000; 52(6):755-62. DOI: 10.1067/mge.2000.110455. View

2.
Tumlinson A, Hariri L, Utzinger U, Barton J . Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement. Appl Opt. 2004; 43(1):113-21. DOI: 10.1364/ao.43.000113. View

3.
Harewood G . Assessment of clinical impact of endoscopic ultrasound on rectal cancer. Am J Gastroenterol. 2004; 99(4):623-7. DOI: 10.1111/j.1572-0241.2004.04116.x. View

4.
Yang V, Tang S, Gordon M, Qi B, Gardiner G, Cirocco M . Endoscopic Doppler optical coherence tomography in the human GI tract: initial experience. Gastrointest Endosc. 2005; 61(7):879-90. DOI: 10.1016/s0016-5107(05)00323-8. View

5.
Kimura T, Muguruma N, Ito S, Okamura S, Imoto Y, Miyamoto H . Infrared fluorescence endoscopy for the diagnosis of superficial gastric tumors. Gastrointest Endosc. 2007; 66(1):37-43. DOI: 10.1016/j.gie.2007.01.009. View