» Articles » PMID: 29704002

Selective Far-field Addressing of Coupled Quantum Dots in a Plasmonic Nanocavity

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Apr 29
PMID 29704002
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Plasmon-emitter hybrid nanocavity systems exhibit strong plasmon-exciton interactions at the single-emitter level, showing great potential as testbeds and building blocks for quantum optics and informatics. However, reported experiments involve only one addressable emitting site, which limits their relevance for many fundamental questions and devices involving interactions among emitters. Here we open up this critical degree of freedom by demonstrating selective far-field excitation and detection of two coupled quantum dot emitters in a U-shaped gold nanostructure. The gold nanostructure functions as a nanocavity to enhance emitter interactions and a nanoantenna to make the emitters selectively excitable and detectable. When we selectively excite or detect either emitter, we observe photon emission predominantly from the target emitter with up to 132-fold Purcell-enhanced emission rate, indicating individual addressability and strong plasmon-exciton interactions. Our work represents a step towards a broad class of plasmonic devices that will enable faster, more compact optics, communication and computation.

Citing Articles

An In-Plane Single-Photon Emitter Combining a Triangular Split-Ring Micro-Optical Resonator and a Colloidal Quantum Dot.

Mukai K, Uchiyama K, Iwata K, Pribyl I Nanomaterials (Basel). 2025; 15(5).

PMID: 40072138 PMC: 11901793. DOI: 10.3390/nano15050335.


Angularly anisotropic tunability of upconversion luminescence by tuning plasmonic local-field responses in gold nanorods antennae with different configurations.

Pan C, Ma Q, Liu S, Xue Y, Fang Z, Zhang S Nanophotonics. 2024; 11(10):2349-2359.

PMID: 39678089 PMC: 11636477. DOI: 10.1515/nanoph-2022-0037.


Approaches for Positioning the Active Medium in Hybrid Nanoplasmonics. Focus on Plasmon-Assisted Photopolymerization.

Chen M, Marguet S, Issa A, Jradi S, Couteau C, Fiorini-Debuisschert C ACS Photonics. 2024; 11(10):3933-3953.

PMID: 39429857 PMC: 11488146. DOI: 10.1021/acsphotonics.4c00868.


Robust consistent single quantum dot strong coupling in plasmonic nanocavities.

Hu S, Huang J, Arul R, Sanchez-Iglesias A, Xiong Y, Liz-Marzan L Nat Commun. 2024; 15(1):6835.

PMID: 39122720 PMC: 11315915. DOI: 10.1038/s41467-024-51170-7.


Routing the Exciton Emissions of WS Monolayer with the High-Order Plasmon Modes of Ag Nanorods.

Li S, Ai R, Chui K, Fang Y, Lai Y, Zhuo X Nano Lett. 2023; 23(10):4183-4190.

PMID: 37158482 PMC: 10214448. DOI: 10.1021/acs.nanolett.3c00054.


References
1.
Efros A, Nesbitt D . Origin and control of blinking in quantum dots. Nat Nanotechnol. 2016; 11(8):661-71. DOI: 10.1038/nnano.2016.140. View

2.
He Y, Zhu K . Strong coupling among semiconductor quantum dots induced by a metal nanoparticle. Nanoscale Res Lett. 2012; 7:95. PMC: 3817590. DOI: 10.1186/1556-276X-7-95. View

3.
Zhang T, Gao N, Li S, Lang M, Xu Q . Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami. J Phys Chem Lett. 2015; 6(11):2043-9. DOI: 10.1021/acs.jpclett.5b00747. View

4.
Schell A, Kewes G, Hanke T, Leitenstorfer A, Bratschitsch R, Benson O . Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures. Opt Express. 2011; 19(8):7914-20. DOI: 10.1364/OE.19.007914. View

5.
Punj D, Mivelle M, Moparthi S, van Zanten T, Rigneault H, van Hulst N . A plasmonic 'antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations. Nat Nanotechnol. 2013; 8(7):512-6. DOI: 10.1038/nnano.2013.98. View