» Articles » PMID: 29702251

Structure/function of the Soluble Guanylyl Cyclase Catalytic Domain

Overview
Journal Nitric Oxide
Publisher Elsevier
Date 2018 Apr 28
PMID 29702251
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Soluble guanylyl cyclase (GC-1) is the primary receptor of nitric oxide (NO) in smooth muscle cells and maintains vascular function by inducing vasorelaxation in nearby blood vessels. GC-1 converts guanosine 5'-triphosphate (GTP) into cyclic guanosine 3',5'-monophosphate (cGMP), which acts as a second messenger to improve blood flow. While much work has been done to characterize this pathway, we lack a mechanistic understanding of how NO binding to the heme domain leads to a large increase in activity at the C-terminal catalytic domain. Recent structural evidence and activity measurements from multiple groups have revealed a low-activity cyclase domain that requires additional GC-1 domains to promote a catalytically-competent conformation. How the catalytic domain structurally transitions into the active conformation requires further characterization. This review focuses on structure/function studies of the GC-1 catalytic domain and recent advances various groups have made in understanding how catalytic activity is regulated including small molecules interactions, Cys-S-NO modifications and potential interactions with the NO-sensor domain and other proteins.

Citing Articles

The Influence of Cell Isolation and Culturing on Natriuretic Peptide Receptors in Aortic Vascular Smooth Muscle Cells.

Rager C, Klopper T, Tasch S, Whittaker M, Exintaris B, Mietens A Cells. 2025; 14(1.

PMID: 39791752 PMC: 11720613. DOI: 10.3390/cells14010051.


Gucy1α1 specifically marks kidney, heart, lung and liver fibroblasts.

Rudman-Melnick V, Vanhoutte D, Stowers K, Sargent M, Adam M, Ma Q Sci Rep. 2024; 14(1):29307.

PMID: 39592775 PMC: 11599588. DOI: 10.1038/s41598-024-80930-0.


Use of Olives-derived Phytochemicals for Prevention and Treatment of Atherosclerosis: An Update.

Dabravolski S, Pleshko E, Sukhorukov V, Glanz V, Sobenin I, Orekhov A Curr Top Med Chem. 2024; 24(25):2173-2190.

PMID: 39162269 DOI: 10.2174/0115680266314560240806101445.


The discovery of hidden guanylate cyclases (GCs) in the proteome.

Turek I, Freihat L, Vyas J, Wheeler J, Muleya V, Manallack D Comput Struct Biotechnol J. 2023; 21:5523-5529.

PMID: 38022692 PMC: 10665587. DOI: 10.1016/j.csbj.2023.11.005.


The evolution of small molecule enzyme activators.

Dow L, Case A, Paustian M, Pinkerton B, Simeon P, Trippier P RSC Med Chem. 2023; 14(11):2206-2230.

PMID: 37974956 PMC: 10650962. DOI: 10.1039/d3md00399j.


References
1.
Follmann M, Griebenow N, Hahn M, Hartung I, Mais F, Mittendorf J . The chemistry and biology of soluble guanylate cyclase stimulators and activators. Angew Chem Int Ed Engl. 2013; 52(36):9442-62. DOI: 10.1002/anie.201302588. View

2.
Sayed N, Baskaran P, Ma X, van den Akker F, Beuve A . Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proc Natl Acad Sci U S A. 2007; 104(30):12312-7. PMC: 1940331. DOI: 10.1073/pnas.0703944104. View

3.
Avelar G, Schumacher R, Zaini P, Leonard G, Richards T, Gomes S . A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol. 2014; 24(11):1234-40. PMC: 4046227. DOI: 10.1016/j.cub.2014.04.009. View

4.
Purohit R, Weichsel A, Montfort W . Crystal structure of the Alpha subunit PAS domain from soluble guanylyl cyclase. Protein Sci. 2013; 22(10):1439-44. PMC: 3795502. DOI: 10.1002/pro.2331. View

5.
Plate L, Marletta M . Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior. Trends Biochem Sci. 2013; 38(11):566-75. PMC: 3819143. DOI: 10.1016/j.tibs.2013.08.008. View