Entanglement Between Two Spatially Separated Atomic Modes
Authors
Affiliations
Modern quantum technologies in the fields of quantum computing, quantum simulation, and quantum metrology require the creation and control of large ensembles of entangled particles. In ultracold ensembles of neutral atoms, nonclassical states have been generated with mutual entanglement among thousands of particles. The entanglement generation relies on the fundamental particle-exchange symmetry in ensembles of identical particles, which lacks the standard notion of entanglement between clearly definable subsystems. Here, we present the generation of entanglement between two spatially separated clouds by splitting an ensemble of ultracold identical particles prepared in a twin Fock state. Because the clouds can be addressed individually, our experiments open a path to exploit the available entangled states of indistinguishable particles for quantum information applications.
Quantifying Unknown Multiqubit Entanglement Using Machine Learning.
Wang Y, Wang S, Xing J, Du Y, Wu X Entropy (Basel). 2025; 27(2).
PMID: 40003182 PMC: 11854209. DOI: 10.3390/e27020185.
Weak versus Deterministic Macroscopic Realism, and Einstein-Podolsky-Rosen's Elements of Reality.
Fulton J, Thenabadu M, Teh R, Reid M Entropy (Basel). 2024; 26(1).
PMID: 38275490 PMC: 11154650. DOI: 10.3390/e26010011.
Programmable interactions and emergent geometry in an array of atom clouds.
Periwal A, Cooper E, Kunkel P, Wienand J, Davis E, Schleier-Smith M Nature. 2021; 600(7890):630-635.
PMID: 34937894 DOI: 10.1038/s41586-021-04156-0.
Twin-lattice atom interferometry.
Gebbe M, Siemss J, Gersemann M, Muntinga H, Herrmann S, Lammerzahl C Nat Commun. 2021; 12(1):2544.
PMID: 33953188 PMC: 8100166. DOI: 10.1038/s41467-021-22823-8.
Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox.
Yadin B, Fadel M, Gessner M Nat Commun. 2021; 12(1):2410.
PMID: 33893281 PMC: 8065158. DOI: 10.1038/s41467-021-22353-3.