» Articles » PMID: 29690551

Electrically and Thermally Conductive Low Density Polyethylene-Based Nanocomposites Reinforced by MWCNT or Hybrid MWCNT/Graphene Nanoplatelets with Improved Thermo-Oxidative Stability

Overview
Date 2018 Apr 26
PMID 29690551
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

In this paper, the electrical and thermal conductivity and morphological behavior of low density polyethylene (LDPE)/multi-walled carbon nanotubes (MWCNTs) + graphene nanoplatelets (GNPs) hybrid nanocomposites (HNCs) have been studied. The distribution of MWCNTs and the hybrid of MWCNTs/GNPs within the polymer matrix has been investigated with scanning electron microscopy (SEM). The results showed that the thermal and electrical conductivity of the LDPE-based nanocomposites increased along with the increasing content of carbon nanofillers. However, one could observe greater improvement in the thermal and electrical conductivity when only MWCNTs have been incorporated. Moreover, the improvement in tensile properties and thermal stability has been observed when carbon nanofillers have been mixed with LDPE. At the same time, the increasing content of MWCNTs and MWCNTs/GNPs caused an increase in the melt viscosity with only little effect on phase transition temperatures.

Citing Articles

Heat transfer mechanism in graphene reinforced PEEK nanocomposites.

Li D, Li T, Mao Z, Zhang Y, Wang B RSC Adv. 2023; 13(39):27599-27607.

PMID: 37720828 PMC: 10503489. DOI: 10.1039/d3ra05202h.


Crystallisation Kinetics and Associated Electrical Conductivity Dynamics of Poly(Ethylene Vinyl Acetate) Nanocomposites in the Melt State.

Stalmann G, Matic A, Jacobsson P, Tranchida D, Gitsas A, Gkourmpis T Nanomaterials (Basel). 2022; 12(20).

PMID: 36296791 PMC: 9612297. DOI: 10.3390/nano12203602.


Development and Perspectives of Thermal Conductive Polymer Composites.

Wang J, Hu L, Li W, Ouyang Y, Bai L Nanomaterials (Basel). 2022; 12(20).

PMID: 36296762 PMC: 9611299. DOI: 10.3390/nano12203574.


Structure and Mechanical Properties of High-Density Polyethylene Composites Reinforced with Glassy Carbon.

Olesik P, Godzierz M, Koziol M, Jala J, Szeluga U, Myalski J Materials (Basel). 2021; 14(14).

PMID: 34300942 PMC: 8306466. DOI: 10.3390/ma14144024.


Thermally enhanced polyolefin composites: fundamentals, progress, challenges, and prospects.

Chaudhry A, Mabrouk A, Abdala A Sci Technol Adv Mater. 2020; 21(1):737-766.

PMID: 33192179 PMC: 7605320. DOI: 10.1080/14686996.2020.1820306.


References
1.
Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S . Electric field effect in atomically thin carbon films. Science. 2004; 306(5696):666-9. DOI: 10.1126/science.1102896. View

2.
Lee C, Wei X, Kysar J, Hone J . Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008; 321(5887):385-8. DOI: 10.1126/science.1157996. View

3.
Celzard , McRae , Deleuze , Dufort , Furdin , Mareche . Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys Rev B Condens Matter. 1996; 53(10):6209-6214. DOI: 10.1103/physrevb.53.6209. View

4.
Vilela D, Parmar J, Zeng Y, Zhao Y, Sanchez S . Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water. Nano Lett. 2016; 16(4):2860-6. PMC: 4867471. DOI: 10.1021/acs.nanolett.6b00768. View

5.
Balandin A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F . Superior thermal conductivity of single-layer graphene. Nano Lett. 2008; 8(3):902-7. DOI: 10.1021/nl0731872. View