» Articles » PMID: 29686300

Anthropogenic Combustion Iron As a Complex Climate Forcer

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Apr 25
PMID 29686300
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Atmospheric iron affects the global carbon cycle by modulating ocean biogeochemistry through the deposition of soluble iron to the ocean. Iron emitted by anthropogenic (fossil fuel) combustion is a source of soluble iron that is currently considered less important than other soluble iron sources, such as mineral dust and biomass burning. Here we show that the atmospheric burden of anthropogenic combustion iron is 8 times greater than previous estimates by incorporating recent measurements of anthropogenic magnetite into a global aerosol model. This new estimation increases the total deposition flux of soluble iron to southern oceans (30-90 °S) by 52%, with a larger contribution of anthropogenic combustion iron than dust and biomass burning sources. The direct radiative forcing of anthropogenic magnetite is estimated to be 0.021 W m globally and 0.22 W m over East Asia. Our results demonstrate that anthropogenic combustion iron is a larger and more complex climate forcer than previously thought, and therefore plays a key role in the Earth system.

Citing Articles

Residential Wood Burning and Vehicle Emissions as Major Sources of Environmentally Persistent Free Radicals in Fairbanks, Alaska.

Edwards K, Kapur S, Fang T, Cesler-Maloney M, Yang Y, Holen A Environ Sci Technol. 2024; 58(32):14293-14305.

PMID: 39093591 PMC: 11325652. DOI: 10.1021/acs.est.4c01206.


Industrial Particulate Pollution and Historical Land Use Contribute Metals of Concern to Dust Deposited in Neighborhoods Along the Wasatch Front, UT, USA.

Putman A, Jones D, Blakowski M, DiViesti D, Hynek S, Fernandez D Geohealth. 2022; 6(11):e2022GH000671.

PMID: 36340997 PMC: 9627553. DOI: 10.1029/2022GH000671.


Variations in concentration and solubility of iron in atmospheric fine particles during the COVID-19 pandemic: An example from China.

Liu L, Lin Q, Liang Z, Du R, Zhang G, Zhu Y Gondwana Res. 2022; 97:138-144.

PMID: 35721257 PMC: 9188026. DOI: 10.1016/j.gr.2021.05.022.


Anthropogenic Asian aerosols provide Fe to the North Pacific Ocean.

Pinedo-Gonzalez P, Hawco N, Bundy R, Armbrust E, Follows M, Cael B Proc Natl Acad Sci U S A. 2020; 117(45):27862-27868.

PMID: 33093199 PMC: 7668086. DOI: 10.1073/pnas.2010315117.


Modeling Transition Metals in East Asia and Japan and Its Emission Sources.

Kajino M, Hagino H, Fujitani Y, Morikawa T, Fukui T, Onishi K Geohealth. 2020; 4(9):e2020GH000259.

PMID: 32999946 PMC: 7507570. DOI: 10.1029/2020GH000259.


References
1.
Jickells T, An Z, Andersen K, Baker A, Bergametti G, Brooks N . Global iron connections between desert dust, ocean biogeochemistry, and climate. Science. 2005; 308(5718):67-71. DOI: 10.1126/science.1105959. View

2.
Bergstrom Jr R . Predictions of the spectral absorption and extinction coefficients of an urban air pollution aerosol model. Atmos Environ. 1972; 6(4):247-58. DOI: 10.1016/0004-6981(72)90083-2. View

3.
Moteki N, Adachi K, Ohata S, Yoshida A, Harigaya T, Koike M . Anthropogenic iron oxide aerosols enhance atmospheric heating. Nat Commun. 2017; 8:15329. PMC: 5440854. DOI: 10.1038/ncomms15329. View

4.
Shamjad P, Tripathi S, Thamban N, Vreeland H . Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur. Sci Rep. 2016; 6:37735. PMC: 5121896. DOI: 10.1038/srep37735. View

5.
Li W, Xu L, Liu X, Zhang J, Lin Y, Yao X . Air pollution-aerosol interactions produce more bioavailable iron for ocean ecosystems. Sci Adv. 2017; 3(3):e1601749. PMC: 5332152. DOI: 10.1126/sciadv.1601749. View