» Articles » PMID: 29681410

Development of a Bivalent Conjugate Vaccine Candidate Against Malaria Transmission and Typhoid Fever

Overview
Journal Vaccine
Date 2018 Apr 24
PMID 29681410
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Immune responses to poorly immunogenic antigens, such as polysaccharides, can be enhanced by conjugation to carriers. Our previous studies indicate that conjugation to Vi polysaccharide of Salmonella Typhi may also enhance immunogenicity of some protein carriers. We therefore explored the possibility of generating a bivalent vaccine against Plasmodium falciparum malaria and typhoid fever, which are co-endemic in many parts of the world, by conjugating Vi polysaccharide, an approved antigen in typhoid vaccine, to Pfs25, a malaria transmission blocking vaccine antigen in clinical trials. Vi-Pfs25 conjugates induced strong immune responses against both Vi and Pfs25 in mice, whereas the unconjugated antigens are poorly immunogenic. Functional assays of immune sera revealed potent transmission blocking activity mediated by anti-Pfs25 antibody and serum bactericidal activity due to anti-Vi antibody. Pfs25 conjugation to Vi modified the IgG isotype distribution of antisera, inducing a Th2 polarized immune response against Vi antigen. This conjugate may be further developed as a bivalent vaccine to concurrently target malaria and typhoid fever.

Citing Articles

Carriers and Antigens: New Developments in Glycoconjugate Vaccines.

van der Put R, Metz B, Pieters R Vaccines (Basel). 2023; 11(2).

PMID: 36851097 PMC: 9962112. DOI: 10.3390/vaccines11020219.


Malaria transmission-blocking conjugate vaccine in ALFQ adjuvant induces durable functional immune responses in rhesus macaques.

Scaria P, Anderson C, Muratova O, Alani N, Trinh H, Nadakal S NPJ Vaccines. 2021; 6(1):148.

PMID: 34887448 PMC: 8660773. DOI: 10.1038/s41541-021-00407-3.


Rotavirus spike protein ΔVP8* as a novel carrier protein for conjugate vaccine platform with demonstrated antigenic potential for use as bivalent vaccine.

Park W, Yoon Y, Park J, Pansuriya R, Seok Y, Ganapathy R Sci Rep. 2021; 11(1):22037.

PMID: 34764353 PMC: 8586335. DOI: 10.1038/s41598-021-01549-z.


Controlled Covalent Conjugation of a Tuberculosis Subunit Antigen (ID93) to Liposome Improved Th1-Type Cytokine Recall Responses in Human Whole Blood.

Adeagbo B, Akinlalu A, Phan T, Guderian J, Boukes G, Willenburg E ACS Omega. 2020; 5(48):31306-31313.

PMID: 33324841 PMC: 7726955. DOI: 10.1021/acsomega.0c04774.


Comparison of carrier proteins to conjugate malaria transmission blocking vaccine antigens, Pfs25 and Pfs230.

Scaria P, Chen B, Rowe C, Alani N, Muratova O, Barnafo E Vaccine. 2020; 38(34):5480-5489.

PMID: 32600913 PMC: 11127250. DOI: 10.1016/j.vaccine.2020.06.018.


References
1.
Rowe A, Rowe S, Snow R, Korenromp E, Schellenberg J, Stein C . The burden of malaria mortality among African children in the year 2000. Int J Epidemiol. 2006; 35(3):691-704. PMC: 3672849. DOI: 10.1093/ije/dyl027. View

2.
Gething P, Patil A, Smith D, Guerra C, Elyazar I, Johnston G . A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J. 2011; 10:378. PMC: 3274487. DOI: 10.1186/1475-2875-10-378. View

3.
Miura K, Orcutt A, Muratova O, Miller L, Saul A, Long C . Development and characterization of a standardized ELISA including a reference serum on each plate to detect antibodies induced by experimental malaria vaccines. Vaccine. 2007; 26(2):193-200. PMC: 2253722. DOI: 10.1016/j.vaccine.2007.10.064. View

4.
Vidarsson G, Dekkers G, Rispens T . IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014; 5:520. PMC: 4202688. DOI: 10.3389/fimmu.2014.00520. View

5.
Uneke C . Concurrent malaria and typhoid fever in the tropics: the diagnostic challenges and public health implications. J Vector Borne Dis. 2008; 45(2):133-42. View