» Articles » PMID: 29681390

The Skin Commensal Yeast Malassezia Globosa Thwarts Bacterial Biofilms to Benefit the Host

Overview
Publisher Elsevier
Specialty Dermatology
Date 2018 Apr 24
PMID 29681390
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Malassezia are abundant, lipid-dependent, commensal yeasts in the skin microbiome that also have a pathogenic lifestyle associated with several common skin disorders. Malassezia genomes encode myriad lipases and proteases thought to mediate lipid utilization and pathogenesis. Li et al. report the biochemical characterization of a unique secreted aspartyl protease produced by Malassezia globosa, MgSAP1, and demonstrate its active role in hindering biofilm formation of the bacterium Staphylococcus aureus. Because biofilms are an established virulence attribute of S. aureus, this study reveals a potential benefit to the host of the fungal aspartyl protease MgSAP1 and opens the door for the investigation of the roles of such molecules in microbial interactions and their possible effects on the host.

Citing Articles

The epidermal lipid-microbiome loop and immunity: Important players in atopic dermatitis.

Wu J, Li L, Zhang T, Lu J, Tai Z, Zhu Q J Adv Res. 2024; 68:359-374.

PMID: 38460775 PMC: 11785582. DOI: 10.1016/j.jare.2024.03.001.


Fungal and bacterial gut microbiota differ between colonization and infection.

Henderickx J, Crobach M, Terveer E, Smits W, Kuijper E, Zwittink R Microbiome Res Rep. 2024; 3(1):8.

PMID: 38455084 PMC: 10917615. DOI: 10.20517/mrr.2023.52.


Dupilumab Alters Both the Bacterial and Fungal Skin Microbiomes of Patients with Atopic Dermatitis.

Umemoto N, Kakurai M, Matsumoto T, Mizuno K, Cho O, Sugita T Microorganisms. 2024; 12(1).

PMID: 38276210 PMC: 10820602. DOI: 10.3390/microorganisms12010224.


The emerging role of extracellular vesicles in fungi: a double-edged sword.

Lai Y, Jiang B, Hou F, Huang X, Ling B, Lu H Front Microbiol. 2023; 14:1216895.

PMID: 37533824 PMC: 10390730. DOI: 10.3389/fmicb.2023.1216895.


Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem.

Chen H, Zhao Q, Zhong Q, Duan C, Krutmann J, Wang J Phenomics. 2023; 2(6):363-382.

PMID: 36939800 PMC: 9712873. DOI: 10.1007/s43657-022-00073-y.


References
1.
Celis A, Vos A, Triana S, Medina C, Escobar N, Restrepo S . Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods. 2017; 134:1-6. DOI: 10.1016/j.mimet.2017.01.001. View

2.
Wu G, Zhao H, Li C, Rajapakse M, Wong W, Xu J . Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin. PLoS Genet. 2015; 11(11):e1005614. PMC: 4634964. DOI: 10.1371/journal.pgen.1005614. View

3.
Pietrella D, Rachini A, Pandey N, Schild L, Netea M, Bistoni F . The Inflammatory response induced by aspartic proteases of Candida albicans is independent of proteolytic activity. Infect Immun. 2010; 78(11):4754-62. PMC: 2976325. DOI: 10.1128/IAI.00789-10. View

4.
White T, Findley K, Dawson Jr T, Scheynius A, Boekhout T, Cuomo C . Fungi on the skin: dermatophytes and Malassezia. Cold Spring Harb Perspect Med. 2014; 4(8). PMC: 4109575. DOI: 10.1101/cshperspect.a019802. View

5.
Rayner S, Bruhn S, Vallhov H, Andersson A, Billmyre R, Scheynius A . Identification of small RNAs in extracellular vesicles from the commensal yeast Malassezia sympodialis. Sci Rep. 2017; 7:39742. PMC: 5209728. DOI: 10.1038/srep39742. View