» Articles » PMID: 29679030

The Effect of Crystallite Size on Pressure Amplification in Switchable Porous Solids

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Apr 22
PMID 29679030
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Negative gas adsorption (NGA) in ordered mesoporous solids is associated with giant contractive structural transitions traversing through metastable states. Here, by systematically downsizing the crystal dimensions of a mesoporous MOF (DUT-49) from several micrometers to less than 200 nm, counterintuitive NGA phenomena are demonstrated to critically depend on the primary crystallite size. Adsorbing probe molecules, such as n-butane or nitrogen, gives insights into size-dependent activation barriers and thermodynamics associated with guest-induced network contraction. Below a critical crystal size, the nitrogen adsorption-induced breathing is completely suppressed as detected using parallelized synchrotron X-ray diffraction-adsorption instrumentation. In contrast, even the smallest particles show NGA in the presence of n-butane, however, associated with a significantly reduced pressure amplification. Consequently, the magnitude of NGA in terms of amount of gas expulsed and pressure amplification can be tuned, potentially paving the way towards innovative concepts for pressure amplification in micro- and macro-system engineering.

Citing Articles

Negative gas adsorption transitions and pressure amplification phenomena in porous frameworks.

Krause S, Evans J, Bon V, Senkovska I, Coudert F, Maurin G Chem Soc Rev. 2025; 54(3):1251-1267.

PMID: 39866063 PMC: 11770586. DOI: 10.1039/d4cs00555d.


Highly defective ultra-small tetravalent MOF nanocrystals.

Dai S, Simms C, Patriarche G, Daturi M, Tissot A, Parac-Vogt T Nat Commun. 2024; 15(1):3434.

PMID: 38653991 PMC: 11039632. DOI: 10.1038/s41467-024-47426-x.


Growth mechanisms and anisotropic softness-dependent conductivity of orientation-controllable metal-organic framework nanofilms.

Yao M, Otake K, Koganezawa T, Ogasawara M, Asakawa H, Tsujimoto M Proc Natl Acad Sci U S A. 2023; 120(40):e2305125120.

PMID: 37748051 PMC: 10556592. DOI: 10.1073/pnas.2305125120.


On the role of history-dependent adsorbate distribution and metastable states in switchable mesoporous metal-organic frameworks.

Walenszus F, Bon V, Evans J, Krause S, Getzschmann J, Kaskel S Nat Commun. 2023; 14(1):3223.

PMID: 37270577 PMC: 10239506. DOI: 10.1038/s41467-023-38737-6.


Challenges in modelling dynamic processes in realistic nanostructured materials at operating conditions.

Van Speybroeck V Philos Trans A Math Phys Eng Sci. 2023; 381(2250):20220239.

PMID: 37211031 PMC: 10200353. DOI: 10.1098/rsta.2022.0239.


References
1.
Furukawa H, Cordova K, OKeeffe M, Yaghi O . The chemistry and applications of metal-organic frameworks. Science. 2013; 341(6149):1230444. DOI: 10.1126/science.1230444. View

2.
VandeVondele J, Hutter J . Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J Chem Phys. 2007; 127(11):114105. DOI: 10.1063/1.2770708. View

3.
Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M . Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. Chemistry. 2011; 17(24):6643-51. DOI: 10.1002/chem.201003211. View

4.
Ferey G, Serre C, Devic T, Maurin G, Jobic H, Llewellyn P . Why hybrid porous solids capture greenhouse gases?. Chem Soc Rev. 2010; 40(2):550-62. DOI: 10.1039/c0cs00040j. View

5.
Grimme S . Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006; 27(15):1787-99. DOI: 10.1002/jcc.20495. View