» Articles » PMID: 29679008

Improving Wood Properties for Wood Utilization Through Multi-omics Integration in Lignin Biosynthesis

Abstract

A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux, metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation.

Citing Articles

A Guide to Metabolic Network Modeling for Plant Biology.

Rao X, Liu W Plants (Basel). 2025; 14(3).

PMID: 39943046 PMC: 11820892. DOI: 10.3390/plants14030484.


Advances in lignocellulosic feedstocks for bioenergy and bioproducts.

Sulis D, Lavoine N, Sederoff H, Jiang X, Marques B, Lan K Nat Commun. 2025; 16(1):1244.

PMID: 39893176 PMC: 11787297. DOI: 10.1038/s41467-025-56472-y.


Epigenetic regulation of lignin biosynthesis in wood formation.

Ma H, Su L, Zhang W, Sun Y, Li D, Li S New Phytol. 2024; 245(4):1589-1607.

PMID: 39639540 PMC: 11754936. DOI: 10.1111/nph.20328.


Molecular understanding of wood formation in trees.

Luo L, Li L For Res (Fayettev). 2024; 2:5.

PMID: 39525426 PMC: 11524228. DOI: 10.48130/FR-2022-0005.


Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants.

Han X, Zhao Y, Chen Y, Xu J, Jiang C, Wang X For Res (Fayettev). 2024; 2:9.

PMID: 39525415 PMC: 11524291. DOI: 10.48130/FR-2022-0009.


References
1.
Van Acker R, Vanholme R, Storme V, Mortimer J, Dupree P, Boerjan W . Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol Biofuels. 2013; 6(1):46. PMC: 3661393. DOI: 10.1186/1754-6834-6-46. View

2.
Bhagia S, Muchero W, Kumar R, Tuskan G, Wyman C . Natural genetic variability reduces recalcitrance in poplar. Biotechnol Biofuels. 2016; 9:106. PMC: 4874023. DOI: 10.1186/s13068-016-0521-2. View

3.
Lin Y, Chen H, Li Q, Li W, Wang J, Shi R . Reciprocal cross-regulation of VND and SND multigene TF families for wood formation in . Proc Natl Acad Sci U S A. 2017; 114(45):E9722-E9729. PMC: 5692596. DOI: 10.1073/pnas.1714422114. View

4.
Shi R, Sun Y, Li Q, Heber S, Sederoff R, Chiang V . Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol. 2009; 51(1):144-63. DOI: 10.1093/pcp/pcp175. View

5.
Ha C, Escamilla-Trevino L, Serrani Yarce J, Kim H, Ralph J, Chen F . An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula. Plant J. 2016; 86(5):363-75. DOI: 10.1111/tpj.13177. View