» Articles » PMID: 29676245

Structure and Interaction Prediction in Prokaryotic RNA Biology

Overview
Specialty Microbiology
Date 2018 Apr 21
PMID 29676245
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Many years of research in RNA biology have soundly established the importance of RNA-based regulation far beyond most early traditional presumptions. Importantly, the advances in "wet" laboratory techniques have produced unprecedented amounts of data that require efficient and precise computational analysis schemes and algorithms. Hence, many methods that attempt topological and functional classification of novel putative RNA-based regulators are available. In this review, we technically outline thermodynamics-based standard RNA secondary structure and RNA-RNA interaction prediction approaches that have proven valuable to the RNA research community in the past and present. For these, we highlight their usability with a special focus on prokaryotic organisms and also briefly mention recent advances in whole-genome interactomics and how this may influence the field of predictive RNA research.

Citing Articles

A Hitchhiker's guide to RNA-RNA structure and interaction prediction tools.

Tieng F, Abdullah-Zawawi M, Md Shahri N, Mohamed-Hussein Z, Lee L, Mutalib N Brief Bioinform. 2023; 25(1).

PMID: 38040490 PMC: 10753535. DOI: 10.1093/bib/bbad421.


Interplay between Regulatory RNAs and Signal Transduction Systems during Bacterial Infection.

Piattelli E, Peltier J, Soutourina O Genes (Basel). 2020; 11(10).

PMID: 33081172 PMC: 7602753. DOI: 10.3390/genes11101209.


CopomuS-Ranking Compensatory Mutations to Guide RNA-RNA Interaction Verification Experiments.

Raden M, Gutmann F, Uhl M, Backofen R Int J Mol Sci. 2020; 21(11).

PMID: 32481751 PMC: 7311995. DOI: 10.3390/ijms21113852.


Lead-seq: transcriptome-wide structure probing in vivo using lead(II) ions.

Twittenhoff C, Brandenburg V, Righetti F, Nuss A, Mosig A, Dersch P Nucleic Acids Res. 2020; 48(12):e71.

PMID: 32463449 PMC: 7337928. DOI: 10.1093/nar/gkaa404.


The impact of various seed, accessibility and interaction constraints on sRNA target prediction- a systematic assessment.

Raden M, Muller T, Mautner S, Gelhausen R, Backofen R BMC Bioinformatics. 2020; 21(1):15.

PMID: 31931703 PMC: 6956497. DOI: 10.1186/s12859-019-3143-4.


References
1.
Robledo M, Frage B, Wright P, Becker A . A stress-induced small RNA modulates alpha-rhizobial cell cycle progression. PLoS Genet. 2015; 11(4):e1005153. PMC: 4414408. DOI: 10.1371/journal.pgen.1005153. View

2.
Mathews D, Sabina J, Zuker M, Turner D . Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999; 288(5):911-40. DOI: 10.1006/jmbi.1999.2700. View

3.
Wright P, Richter A, Papenfort K, Mann M, Vogel J, Hess W . Comparative genomics boosts target prediction for bacterial small RNAs. Proc Natl Acad Sci U S A. 2013; 110(37):E3487-96. PMC: 3773804. DOI: 10.1073/pnas.1303248110. View

4.
Seemann S, Menzel P, Backofen R, Gorodkin J . The PETfold and PETcofold web servers for intra- and intermolecular structures of multiple RNA sequences. Nucleic Acids Res. 2011; 39(Web Server issue):W107-11. PMC: 3125731. DOI: 10.1093/nar/gkr248. View

5.
Wright P, Georg J . Workflow for a Computational Analysis of an sRNA Candidate in Bacteria. Methods Mol Biol. 2018; 1737:3-30. DOI: 10.1007/978-1-4939-7634-8_1. View