» Articles » PMID: 29657360

Interplay Between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS Nanocrystals

Overview
Journal Chem Mater
Date 2018 Apr 17
PMID 29657360
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

ZnS shelling of I-III-VI nanocrystals (NCs) invariably leads to blue-shifts in both the absorption and photoluminescence spectra. These observations imply that the outcome of ZnS shelling reactions on I-III-VI colloidal NCs results from a complex interplay between several processes taking place in solution, at the surface of, and within the seed NC. However, a fundamental understanding of the factors determining the balance between these different processes is still lacking. In this work, we address this need by investigating the impact of precursor reactivity, reaction temperature, and surface chemistry (due to the washing procedure) on the outcome of ZnS shelling reactions on CuInS NCs using a seeded growth approach. We demonstrate that low reaction temperatures (150 °C) favor etching, cation exchange, and alloying regardless of the precursors used. Heteroepitaxial shell overgrowth becomes the dominant process only if reactive S- and Zn-precursors (S-ODE/OLAM and ZnI) and high reaction temperatures (210 °C) are used, although a certain degree of heterointerfacial alloying still occurs. Remarkably, the presence of residual acetate at the surface of CIS seed NCs washed with ethanol is shown to facilitate heteroepitaxial shell overgrowth, yielding for the first time CIS/ZnS core/shell NCs displaying red-shifted absorption spectra, in agreement with the spectral shifts expected for a type-I band alignment. The insights provided by this work pave the way toward the design of improved synthesis strategies to CIS/ZnS core/shell and alloy NCs with tailored elemental distribution profiles, allowing precise tuning of the optoelectronic properties of the resulting materials.

Citing Articles

AgGaS and Derivatives: Design, Synthesis, and Optical Properties.

Xing G, Chen B Nanomaterials (Basel). 2025; 15(2).

PMID: 39852762 PMC: 11767431. DOI: 10.3390/nano15020147.


Emergence of Near-Infrared Photoluminescence via ZnS Shell Growth on the AgBiS Nanocrystals.

Onal A, Kaya T, Metin O, Nizamoglu S Chem Mater. 2025; 37(1):255-265.

PMID: 39830218 PMC: 11736682. DOI: 10.1021/acs.chemmater.4c02406.


Multimodal Temperature Readout Boosts the Performance of CuInS/ZnS Quantum Dot Nanothermometers.

Duda M, Joshi P, Borodziuk A, Sobczak K, Sikora-Dobrowolska B, Mackowski S ACS Appl Mater Interfaces. 2024; 16(44):60008-60017.

PMID: 39437320 PMC: 11551904. DOI: 10.1021/acsami.4c14541.


Interface Engineering of Water-Dispersible Near-Infrared-Emitting CuInZnS/ZnSe/ZnS Quantum Dots.

Mann P, Fairclough S, Bourke S, Burkitt Gray M, Urbano L, Morgan D Cryst Growth Des. 2024; 24(15):6275-6283.

PMID: 39131444 PMC: 11311135. DOI: 10.1021/acs.cgd.4c00528.


Enhancement mechanism of quantum yield in core/shell/shell quantum dots of ZnS-AgInS/ZnInS/ZnS.

Jeong S, Ko M, Nam S, Oh J, Park S, Do Y Nanoscale Adv. 2024; 6(3):925-933.

PMID: 38298589 PMC: 10825935. DOI: 10.1039/d3na01052j.


References
1.
Xia C, Meeldijk J, Gerritsen H, Donega C . Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS/ZnS Core/Shell Colloidal Quantum Dots. Chem Mater. 2017; 29(11):4940-4951. PMC: 5473174. DOI: 10.1021/acs.chemmater.7b01258. View

2.
Zang H, Li H, Makarov N, Velizhanin K, Wu K, Park Y . Thick-Shell CuInS/ZnS Quantum Dots with Suppressed "Blinking" and Narrow Single-Particle Emission Line Widths. Nano Lett. 2017; 17(3):1787-1795. DOI: 10.1021/acs.nanolett.6b05118. View

3.
Leach A, Macdonald J . Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin. J Phys Chem Lett. 2016; 7(3):572-83. DOI: 10.1021/acs.jpclett.5b02211. View

4.
Wepfer S, Frohleiks J, Hong A, Jang H, Bacher G, Nannen E . Solution-Processed CuInS-Based White QD-LEDs with Mixed Active Layer Architecture. ACS Appl Mater Interfaces. 2017; 9(12):11224-11230. DOI: 10.1021/acsami.6b15660. View

5.
Feng J, Sun M, Yang F, Yang X . A facile approach to synthesize high-quality Zn(x)Cu(y)InS(1.5+x+0.5y) nanocrystal emitters. Chem Commun (Camb). 2011; 47(22):6422-4. DOI: 10.1039/c1cc11754h. View