» Articles » PMID: 29625057

Tumor Evolution and Drug Response in Patient-Derived Organoid Models of Bladder Cancer

Abstract

Bladder cancer is the fifth most prevalent cancer in the U.S., yet is understudied, and few laboratory models exist that reflect the biology of the human disease. Here, we describe a biobank of patient-derived organoid lines that recapitulates the histopathological and molecular diversity of human bladder cancer. Organoid lines can be established efficiently from patient biopsies acquired before and after disease recurrence and are interconvertible with orthotopic xenografts. Notably, organoid lines often retain parental tumor heterogeneity and exhibit a spectrum of genomic changes that are consistent with tumor evolution in culture. Analyses of drug response using bladder tumor organoids show partial correlations with mutational profiles, as well as changes associated with treatment resistance, and specific responses can be validated using xenografts in vivo. Our studies indicate that patient-derived bladder tumor organoids represent a faithful model system for studying tumor evolution and treatment response in the context of precision cancer medicine.

Citing Articles

Establishing a cryopreserved biobank of living tumor tissues for drug sensitivity testing.

Chen P, Zhou J, Chu X, Feng Y, Zeng Q, Lei J Bioact Mater. 2025; 46:582-596.

PMID: 40061435 PMC: 11889390. DOI: 10.1016/j.bioactmat.2024.09.008.


Super-enhancer-hijacking RBBP7 potentiates metastasis and stemness of breast cancer via recruiting NuRD complex subunit LSD1.

Xi Y, Wang R, Qu M, Pan Q, Wang M, Ai X J Transl Med. 2025; 23(1):266.

PMID: 40038738 PMC: 11877695. DOI: 10.1186/s12967-025-06270-3.


Effects of hydrogel stiffness and viscoelasticity on organoid culture: a comprehensive review.

Lai W, Geliang H, Bin X, Wang W Mol Med. 2025; 31(1):83.

PMID: 40033190 PMC: 11877758. DOI: 10.1186/s10020-025-01131-7.


Exosome-transmitted LUCAT1 promotes stemness transformation and chemoresistance in bladder cancer by binding to IGF2BP2.

Zhan Y, Zhou Z, Zhu Z, Zhang L, Yu S, Liu Y J Exp Clin Cancer Res. 2025; 44(1):80.

PMID: 40025525 PMC: 11874664. DOI: 10.1186/s13046-025-03330-w.


Novel organoid model in drug screening: Past, present, and future.

Nie X, Liang Z, Li K, Yu H, Huang Y, Ye L Liver Res. 2025; 5(2):72-78.

PMID: 39959346 PMC: 11791835. DOI: 10.1016/j.livres.2021.05.003.


References
1.
Hedegaard J, Lamy P, Nordentoft I, Algaba F, Hoyer S, Ulhoi B . Comprehensive Transcriptional Analysis of Early-Stage Urothelial Carcinoma. Cancer Cell. 2016; 30(1):27-42. DOI: 10.1016/j.ccell.2016.05.004. View

2.
Redelman-Sidi G, Glickman M, Bochner B . The mechanism of action of BCG therapy for bladder cancer--a current perspective. Nat Rev Urol. 2014; 11(3):153-62. DOI: 10.1038/nrurol.2014.15. View

3.
Williams S, Hurst C, Knowles M . Oncogenic FGFR3 gene fusions in bladder cancer. Hum Mol Genet. 2012; 22(4):795-803. PMC: 3554204. DOI: 10.1093/hmg/dds486. View

4.
van de Wetering M, Francies H, Francis J, Bounova G, Iorio F, Pronk A . Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015; 161(4):933-45. PMC: 6428276. DOI: 10.1016/j.cell.2015.03.053. View

5.
Lindgren D, Sjodahl G, Lauss M, Staaf J, Chebil G, Lovgren K . Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma. PLoS One. 2012; 7(6):e38863. PMC: 3369837. DOI: 10.1371/journal.pone.0038863. View