» Articles » PMID: 29611542

Complex Roles of the Stroma in the Intrinsic Resistance to Gemcitabine in Pancreatic Cancer: Where We Are and Where We Are Going

Overview
Journal Exp Mol Med
Date 2018 Apr 4
PMID 29611542
Citations 73
Authors
Affiliations
Soon will be listed here.
Abstract

Pancreatic ductal adenocarcinoma (PDAC) is among the most devastating human malignancies. The poor clinical outcome in PDAC is partly attributed to a growth-permissive tumor microenvironment. In the PDAC microenvironment, the stroma is characterized by the development of extensive fibrosis, with stromal components outnumbering pancreatic cancer cells. Each of the components within the stroma has a distinct role in conferring chemoresistance to PDAC, and intrinsic chemoresistance has further worsened this pessimistic prognosis. The nucleoside analog gemcitabine (GEM) is usually the recommended first-line chemotherapeutic agent for PDAC patients and is given alone or in combination with other agents. The mechanisms of intrinsic resistance to GEM are an active area of ongoing research. This review highlights the important role the complex structure of stroma in PDAC plays in the intrinsic resistance to GEM and discusses whether antistroma therapy improves the efficacy of GEM. The addition of antistroma therapy combined with GEM is expected to be a novel therapeutic strategy with significant survival benefits for PDAC patients.

Citing Articles

ECM Stiffness-Induced Redox Signaling Enhances Stearoyl Gemcitabine Efficacy in Pancreatic Cancer.

Zhao S, Agyare E, Zhu X, Trevino J, Rogers S, Velazquez-Villarreal E Cancers (Basel). 2025; 17(5).

PMID: 40075719 PMC: 11899364. DOI: 10.3390/cancers17050870.


Targeting FAK improves the tumor uptake of antibody-drug conjugates to strengthen the anti-cancer responses.

Zhang B, Zhang Z, Gao J, Lu S, Pang R, Li D iScience. 2025; 28(3):111536.

PMID: 40040813 PMC: 11879607. DOI: 10.1016/j.isci.2024.111536.


Proteomic meta-analysis unveils new frontiers for biomarkers research in pancreatic carcinoma.

Di Marco F, Cufaro M, Damiani V, Dufrusine B, Pizzinato E, Di Ferdinando F Oncogenesis. 2025; 14(1):3.

PMID: 39956821 PMC: 11830788. DOI: 10.1038/s41389-025-00547-4.


Long non-coding RNA MIR4435-2HG modulates pancreatic cancer stem cells and chemosensitivity to gemcitabine by targeting the miR-1252-5p/STAT1.

Xie B, Wu P, Liu H, Yang X, Huang L J Transl Med. 2025; 23(1):165.

PMID: 39920781 PMC: 11806857. DOI: 10.1186/s12967-025-06128-8.


Insights and therapeutic advances in pancreatic cancer: the role of electron microscopy in decoding the tumor microenvironment.

Dai H, Chen X, Yang J, Loiola R, Lu A, Cheung K Front Cell Dev Biol. 2025; 12:1460544.

PMID: 39744013 PMC: 11688199. DOI: 10.3389/fcell.2024.1460544.


References
1.
Kultti A, Zhao C, Singha N, Zimmerman S, Osgood R, Symons R . Accumulation of extracellular hyaluronan by hyaluronan synthase 3 promotes tumor growth and modulates the pancreatic cancer microenvironment. Biomed Res Int. 2014; 2014:817613. PMC: 4131462. DOI: 10.1155/2014/817613. View

2.
Erkan M, Kurtoglu M, Kleeff J . The role of hypoxia in pancreatic cancer: a potential therapeutic target?. Expert Rev Gastroenterol Hepatol. 2015; 10(3):301-16. DOI: 10.1586/17474124.2016.1117386. View

3.
Yauch R, Gould S, Scales S, Tang T, Tian H, Ahn C . A paracrine requirement for hedgehog signalling in cancer. Nature. 2008; 455(7211):406-10. DOI: 10.1038/nature07275. View

4.
Vonlaufen A, Joshi S, Qu C, Phillips P, Xu Z, Parker N . Pancreatic stellate cells: partners in crime with pancreatic cancer cells. Cancer Res. 2008; 68(7):2085-93. DOI: 10.1158/0008-5472.CAN-07-2477. View

5.
Toole B . Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 2004; 4(7):528-39. DOI: 10.1038/nrc1391. View