» Articles » PMID: 29608724

Higher Rates of Protein Evolution in the Self-Fertilizing Plant Arabidopsis Thaliana Than in the Out-Crossers Arabidopsis Lyrata and Arabidopsis Halleri

Overview
Date 2018 Apr 3
PMID 29608724
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The common transition from out-crossing to self-fertilization in plants decreases effective population size. This is expected to result in a reduced efficacy of natural selection and in increased rates of protein evolution in selfing plants compared with their outcrossing congeners. Prior analyses, based on a very limited number of genes, detected no differences between the rates of protein evolution in the selfing Arabidopsis thaliana compared with the out-crosser Arabidopsis lyrata. Here, we reevaluate this trend using the complete genomes of A. thaliana, A. lyrata, Arabidopsis halleri, and the outgroups Capsella rubella and Thellungiella parvula. Our analyses indicate slightly but measurably higher nonsynonymous divergences (dN), synonymous divergences (dS) and dN/dS ratios in A. thaliana compared with the other Arabidopsis species, indicating that purifying selection is indeed less efficacious in A. thaliana.

Citing Articles

Fixation of Expression Divergences by Natural Selection in Coding Genes.

Qi C, Wei Q, Ye Y, Liu J, Li G, Liang J Int J Mol Sci. 2025; 25(24.

PMID: 39769472 PMC: 11678068. DOI: 10.3390/ijms252413710.


Stop and go signals at the stigma-pollen interface of the Brassicaceae.

Nasrallah J Plant Physiol. 2023; 193(2):927-948.

PMID: 37423711 PMC: 10517188. DOI: 10.1093/plphys/kiad301.


Weaker selection on genes with treatment-specific expression consistent with a limit on plasticity evolution in Arabidopsis thaliana.

Roberts M, Josephs E Genetics. 2023; 224(2).

PMID: 37094602 PMC: 10484170. DOI: 10.1093/genetics/iyad074.


Comparative analyses of the Hymenoscyphus fraxineus and Hymenoscyphus albidus genomes reveals potentially adaptive differences in secondary metabolite and transposable element repertoires.

Elfstrand M, Chen J, Cleary M, Halecker S, Ihrmark K, Karlsson M BMC Genomics. 2021; 22(1):503.

PMID: 34217229 PMC: 8254937. DOI: 10.1186/s12864-021-07837-2.


Paternally Expressed Imprinted Genes under Positive Darwinian Selection in Arabidopsis thaliana.

Tuteja R, McKeown P, Ryan P, Morgan C, Donoghue M, Downing T Mol Biol Evol. 2019; 36(6):1239-1253.

PMID: 30913563 PMC: 6526901. DOI: 10.1093/molbev/msz063.

References
1.
Gan X, Stegle O, Behr J, Steffen J, Drewe P, Hildebrand K . Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature. 2011; 477(7365):419-23. PMC: 4856438. DOI: 10.1038/nature10414. View

2.
Dassanayake M, Oh D, Haas J, Hernandez A, Hong H, Ali S . The genome of the extremophile crucifer Thellungiella parvula. Nat Genet. 2011; 43(9):913-8. PMC: 3586812. DOI: 10.1038/ng.889. View

3.
Lanfear R, Ho S, Davies T, Moles A, Aarssen L, Swenson N . Taller plants have lower rates of molecular evolution. Nat Commun. 2013; 4:1879. DOI: 10.1038/ncomms2836. View

4.
Mattila T, Tyrmi J, Pyhajarvi T, Savolainen O . Genome-Wide Analysis of Colonization History and Concomitant Selection in Arabidopsis lyrata. Mol Biol Evol. 2017; 34(10):2665-2677. DOI: 10.1093/molbev/msx193. View

5.
Glemin S, Bazin E, Charlesworth D . Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proc Biol Sci. 2006; 273(1604):3011-9. PMC: 1639510. DOI: 10.1098/rspb.2006.3657. View