» Articles » PMID: 29606496

Small Interfering RNA-Mediated Control of Virus Replication in the CNS Is Therapeutic and Enables Natural Immunity to West Nile Virus

Overview
Publisher Cell Press
Date 2018 Apr 3
PMID 29606496
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

No vaccines or therapeutics are licensed for West Nile virus (WNV), a mosquito-transmitted neuroencephalitic flavivirus. The small interfering RNA siFvE targets a conserved sequence within the WNV E protein and limits virus infection. Using a rabies virus-derived neuron-targeting peptide (RVG9R) and an intranasal route for delivering siFvE to the CNS, we demonstrate that treatment of WNV-infected mice at late stages of neuroinvasive disease results in recovery. Selectively targeting virus in the CNS lowers viral burdens in the brain, reduces neuropathology, and results in a 90% survival rate at 5-6 days post-infection (when viral titers peak in the CNS), while placebo-treated mice succumb by days 9-10. Importantly, CNS virus clearance is achieved by humoral and cell-mediated immune responses to WNV infection in peripheral tissues, which also engender sterilizing immunity against subsequent WNV infection. These results indicate that intranasal RVG9R-siRNA treatment offers efficient late-stage therapy and facilitates natural long-term immunity against neuroinvasive flaviviruses.

Citing Articles

Eye Drop with Fas-Blocking Peptide Attenuates Age-Related Macular Degeneration.

Yi Y, Pyun S, Kim C, Yun G, Kang E, Heo S Cells. 2024; 13(6.

PMID: 38534392 PMC: 10969560. DOI: 10.3390/cells13060548.


Intranasal Delivery of Anti-Apoptotic siRNA Complexed with Fas-Signaling Blocking Peptides Attenuates Cellular Apoptosis in Brain Ischemia.

Chung K, Ullah I, Yi Y, Kang E, Yun G, Heo S Pharmaceutics. 2024; 16(2).

PMID: 38399343 PMC: 10892455. DOI: 10.3390/pharmaceutics16020290.


Systemic Treatment with Fas-Blocking Peptide Attenuates Apoptosis in Brain Ischemia.

Chung S, Yi Y, Ullah I, Chung K, Park S, Lim J Int J Mol Sci. 2024; 25(1).

PMID: 38203830 PMC: 10780202. DOI: 10.3390/ijms25010661.


Analytical Approaches to Uncover Genetic Associations for Rare Outcomes: Lessons from West Nile Neuroinvasive Disease.

Cahill M, Montgomery R Methods Mol Biol. 2022; 2585:193-203.

PMID: 36331775 PMC: 9867870. DOI: 10.1007/978-1-0716-2760-0_17.


Current trends in targeted therapy for drug-resistant infections.

Rahbarnia L, Farajnia S, Naghili B, Ahmadzadeh V, Veisi K, Baghban R Appl Microbiol Biotechnol. 2019; 103(20):8301-8314.

PMID: 31414162 PMC: 7080082. DOI: 10.1007/s00253-019-10028-5.


References
1.
Zeller S, Choi C, Uchil P, Ban H, Siefert A, Fahmy T . Attachment of cell-binding ligands to arginine-rich cell-penetrating peptides enables cytosolic translocation of complexed siRNA. Chem Biol. 2014; 22(1):50-62. PMC: 4320807. DOI: 10.1016/j.chembiol.2014.11.009. View

2.
Gould L, Sui J, Foellmer H, Oliphant T, Wang T, Ledizet M . Protective and therapeutic capacity of human single-chain Fv-Fc fusion proteins against West Nile virus. J Virol. 2005; 79(23):14606-13. PMC: 1287547. DOI: 10.1128/JVI.79.23.14606-14613.2005. View

3.
Hayes E, Sejvar J, Zaki S, Lanciotti R, Bode A, Campbell G . Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg Infect Dis. 2005; 11(8):1174-9. PMC: 3320472. DOI: 10.3201/eid1108.050289b. View

4.
Haley M, Retter A, Fowler D, Gea-Banacloche J, OGrady N . The role for intravenous immunoglobulin in the treatment of West Nile virus encephalitis. Clin Infect Dis. 2003; 37(6):e88-90. DOI: 10.1086/377172. View

5.
Sitati E, Diamond M . CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J Virol. 2006; 80(24):12060-9. PMC: 1676257. DOI: 10.1128/JVI.01650-06. View