» Articles » PMID: 29603189

Along the Speciation Continuum: Quantifying Intrinsic and Extrinsic Isolating Barriers Across Five Million Years of Evolutionary Divergence in California Jewelflowers

Overview
Journal Evolution
Specialty Biology
Date 2018 Apr 1
PMID 29603189
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Understanding the relative roles of intrinsic and extrinsic reproductive barriers, and their interplay within the geographic context of diverging taxa, remains an outstanding challenge in the study of speciation. We conducted a comparative analysis of reproductive isolation in California Jewelflowers (Streptanthus, s.l., Brassicaceae) by quantifying potential barriers to gene flow at multiple life history stages in 39 species pairs spanning five million years of evolutionary divergence. We quantified nine potential pre- and postzygotic barriers and explored patterns of reproductive isolation in relation to genetic distance. Intrinsic postzygotic isolation was initially weak, increased at intermediate genetic distances, and reached a threshold characterized by complete genetic incompatibility. Climatic niche differences were strong at shallow genetic distances, and species pairs with overlapping ranges showed slight but appreciable phenological isolation, highlighting the potential for ecological barriers to contribute to speciation. Geographic analyses suggest that speciation is not regionally allopatric in the California Jewelflowers, as recently diverged taxa occur in relatively close proximity and display substantial range overlap. Young pairs are characterized by incomplete intrinsic postzygotic isolation, suggesting that extrinsic barriers or fine-scale spatial segregation are more important early in the divergence process than genetic incompatibilities.

Citing Articles

What Predicts Gene Flow During Speciation? The Relative Roles of Time, Space, Morphology and Climate.

Streicher J, Lambert S, Mendez de la Cruz F, Martinez-Mendez N, Garcia-Vazquez U, Nieto Montes de Oca A Mol Ecol. 2024; 33(23):e17580.

PMID: 39506895 PMC: 11589662. DOI: 10.1111/mec.17580.


Parental dialectic: Epigenetic conversations in endosperm.

Khouider S, Gehring M Curr Opin Plant Biol. 2024; 81:102591.

PMID: 38944896 PMC: 11392645. DOI: 10.1016/j.pbi.2024.102591.


Phylogenomic perspectives on speciation and reproductive isolation in a North American biodiversity hotspot: an example using California sages (Salvia subgenus Audibertia: Lamiaceae).

Rose J, Kriebel R, Sytsma K, Drew B Ann Bot. 2024; 134(2):295-310.

PMID: 38733329 PMC: 11232522. DOI: 10.1093/aob/mcae073.


Hybridization, polyploidization, and morphological convergence make dozens of taxa into one chaotic genetic pool: a phylogenomic case of the species complex (Moraceae).

Wang X, Liao S, Zhang Z, Zhang J, Mei L, Li H Front Plant Sci. 2024; 15:1354812.

PMID: 38595762 PMC: 11002808. DOI: 10.3389/fpls.2024.1354812.


Secondary Contact, Introgressive Hybridization, and Genome Stabilization in Sticklebacks.

Feng X, Merila J, Loytynoja A Mol Biol Evol. 2024; 41(2).

PMID: 38366566 PMC: 10903534. DOI: 10.1093/molbev/msae031.