» Articles » PMID: 29594638

A SERS Method with Attomolar Sensitivity: a Case Study with the Flavonoid Catechin

Overview
Journal Mikrochim Acta
Specialties Biotechnology
Chemistry
Date 2018 Mar 30
PMID 29594638
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Making good use of interactions between analyte molecules and the metal nanoparticles is key to impact the detection limit in a surface-enhanced Raman scattering (SERS) based detections. SERS was applied to the analysis of catechin and it was found that the relative abundance of catechin in the sample to citrate-capped AgNPs and the aggregation agent NaCl plays a critical role in the quality of detection. At a component volume ratio of 6:2:1 (catechin:AgNPs:NaCl), catechin can be detected at µM levels. When the ratio is 12:2:1, Raman signals are discernible even at the attomolar concentration level (10 M). Under these conditions, the SERS mechanisms and the force of laser tweezers function best. The extent of signal enhancement enabled an ultrasensitive and reproducible Raman spectroscopic determination of catechin. Graphical abstract At a component volume ratio of 6:2:1 (catechin:AgNPs:NaCl), catechin was detected at 10 M to 10 M. When the ratio was 12:2:1, the discernible concentration of catechin was found to reach the attomolar level (10 M).

Citing Articles

Predicting the storage time of green tea by myricetin based on surface-enhanced Raman spectroscopy.

Xiao M, Chen Y, Zheng F, An Q, Xiao M, Wang H NPJ Sci Food. 2023; 7(1):28.

PMID: 37291144 PMC: 10250423. DOI: 10.1038/s41538-023-00206-1.


Adsorbate enrichment on a zeolite surface and assembly of a SERS sensor: a case study with silver nanoparticles and the flavonoid catechin.

Huang C, Cheng C, Chou C, Chen W RSC Adv. 2022; 9(11):6048-6053.

PMID: 35517300 PMC: 9060901. DOI: 10.1039/c9ra00039a.


Colorimetric determination of polyphenols via a gold nanoseeds-decorated polydopamine film.

Scroccarello A, Della Pelle F, Fratini E, Ferraro G, Scarano S, Palladino P Mikrochim Acta. 2020; 187(5):267.

PMID: 32285210 DOI: 10.1007/s00604-020-04228-4.


Rapid synthesis of a highly active and uniform 3-dimensional SERS substrate for on-spot sensing of dopamine.

Lin B, Chen J, Kannan P, Zeng Y, Qiu B, Guo L Mikrochim Acta. 2019; 186(4):260.

PMID: 30927088 DOI: 10.1007/s00604-019-3357-1.


A calcium alginate sponge with embedded gold nanoparticles as a flexible SERS substrate for direct analysis of pollutant dyes.

Fu H, Chen J, Chen L, Zhu X, Chen Z, Qiu B Mikrochim Acta. 2019; 186(2):64.

PMID: 30627805 DOI: 10.1007/s00604-018-3173-z.


References
1.
Tong L, Righini M, Gonzalez M, Quidant R, Kall M . Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. Lab Chip. 2008; 9(2):193-5. DOI: 10.1039/b813204f. View

2.
Botten D, Fugallo G, Fraternali F, Molteni C . Structural Properties of Green Tea Catechins. J Phys Chem B. 2015; 119(40):12860-7. DOI: 10.1021/acs.jpcb.5b08737. View

3.
Abalde-Cela S, Aldeanueva-Potel P, Mateo-Mateo C, Rodriguez-Lorenzo L, Alvarez-Puebla R, Liz-Marzan L . Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. J R Soc Interface. 2010; 7 Suppl 4:S435-50. PMC: 2943889. DOI: 10.1098/rsif.2010.0125.focus. View

4.
de Rijke E, Out P, Niessen W, Ariese F, Gooijer C, Brinkman U . Analytical separation and detection methods for flavonoids. J Chromatogr A. 2006; 1112(1-2):31-63. DOI: 10.1016/j.chroma.2006.01.019. View

5.
Lin L, Chen P, Harnly J . New phenolic components and chromatographic profiles of green and fermented teas. J Agric Food Chem. 2008; 56(17):8130-40. PMC: 3746187. DOI: 10.1021/jf800986s. View