» Articles » PMID: 29579713

Mesoscale Connectomics

Overview
Specialties Biology
Neurology
Date 2018 Mar 27
PMID 29579713
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Brain cells communicate with one another via local and long-range synaptic connections. Structural connectivity is the foundation for neural function. Brain-wide connectivity can be described at macroscopic, mesoscopic and microscopic levels. The mesoscale connectome represents connections between neuronal types across different brain regions. Building a mesoscale connectome requires a detailed understanding of the cell type composition of different brain regions and the patterns of inputs and outputs that each of these cell types receives and forms, respectively. In this review, I discuss historical and contemporary tracing techniques in both anterograde and retrograde directions to map the input and output connections at population and individual cell levels, as well as imaging and network analysis approaches to build mesoscale connectomes for mammalian brains.

Citing Articles

Cognitive synaptopathy: synaptic and dendritic spine dysfunction in age-related cognitive disorders.

Barrantes F Front Aging Neurosci. 2024; 16:1476909.

PMID: 39420927 PMC: 11484076. DOI: 10.3389/fnagi.2024.1476909.


Beyond the usual suspects: multi-factorial computational models in the search for neurodegenerative disease mechanisms.

Khan A, Iturria-Medina Y Transl Psychiatry. 2024; 14(1):386.

PMID: 39313512 PMC: 11420368. DOI: 10.1038/s41398-024-03073-w.


Connecto-informatics at the mesoscale: current advances in image processing and analysis for mapping the brain connectivity.

Choi Y, Feng L, Jeong W, Kim J Brain Inform. 2024; 11(1):15.

PMID: 38833195 PMC: 11150223. DOI: 10.1186/s40708-024-00228-9.


Neuronal Subtypes and Connectivity of the Adult Mouse Paralaminar Amygdala.

Saxon D, Alderman P, Sorrells S, Vicini S, Corbin J eNeuro. 2024; 11(6).

PMID: 38811163 PMC: 11208988. DOI: 10.1523/ENEURO.0119-24.2024.


The meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition.

Magrou L, Joyce M, Froudist-Walsh S, Datta D, Wang X, Martinez-Trujillo J Cereb Cortex. 2024; 34(5).

PMID: 38771244 PMC: 11107384. DOI: 10.1093/cercor/bhae174.


References
1.
Wertz A, Trenholm S, Yonehara K, Hillier D, Raics Z, Leinweber M . PRESYNAPTIC NETWORKS. Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules. Science. 2015; 349(6243):70-4. DOI: 10.1126/science.aab1687. View

2.
Preissl S, Fang R, Huang H, Zhao Y, Raviram R, Gorkin D . Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation. Nat Neurosci. 2018; 21(3):432-439. PMC: 5862073. DOI: 10.1038/s41593-018-0079-3. View

3.
Ciabatti E, Gonzalez-Rueda A, Mariotti L, Morgese F, Tripodi M . Life-Long Genetic and Functional Access to Neural Circuits Using Self-Inactivating Rabies Virus. Cell. 2017; 170(2):382-392.e14. PMC: 5509544. DOI: 10.1016/j.cell.2017.06.014. View

4.
Jarrell T, Wang Y, Bloniarz A, Brittin C, Xu M, Thomson J . The connectome of a decision-making neural network. Science. 2012; 337(6093):437-44. DOI: 10.1126/science.1221762. View

5.
Economo M, Clack N, Lavis L, Gerfen C, Svoboda K, Myers E . A platform for brain-wide imaging and reconstruction of individual neurons. Elife. 2016; 5:e10566. PMC: 4739768. DOI: 10.7554/eLife.10566. View