Analysis of Long Range Dependence in the EEG Signals of Alzheimer Patients
Overview
Affiliations
Alzheimer's disease (AD), a cognitive disability is analysed using a long range dependence parameter, hurst exponent (HE), calculated based on the time domain analysis of the measured electrical activity of brain. The electroencephalogram (EEG) signals of controls and mild cognitive impairment (MCI)-AD patients are evaluated under normal resting and mental arithmetic conditions. Simultaneous low pass filtering and total variation denoising algorithm is employed for preprocessing. Larger values of HE observed in the right hemisphere of the brain for AD patients indicated a decrease in irregularity of the EEG signal under cognitive task conditions. Correlations between HE and the neuropsychological indices are analysed using bivariate correlation analysis. The observed reduction in the values of Auto mutual information and cross mutual information in the local antero-frontal and distant regions in the brain hemisphere indicates the loss of information transmission in MCI-AD patients.
Ge Y, Yin J, Chen C, Yang S, Han Y, Ding C Front Aging Neurosci. 2025; 16():1470836.
PMID: 39834619 PMC: 11743677. DOI: 10.3389/fnagi.2024.1470836.
Zheng H, Xiong X, Zhang X Brain Sci. 2024; 14(6).
PMID: 38928565 PMC: 11202180. DOI: 10.3390/brainsci14060565.
Lee K, Choi K, Park S, Lee S, Im C Alzheimers Res Ther. 2022; 14(1):170.
PMID: 36371269 PMC: 9652885. DOI: 10.1186/s13195-022-01115-3.
Das S, Puthankattil S Front Comput Neurosci. 2022; 16:877912.
PMID: 35733555 PMC: 9207343. DOI: 10.3389/fncom.2022.877912.
Zhang Q, Yang X, Sun Z PLoS One. 2022; 17(3):e0262722.
PMID: 35353825 PMC: 8967000. DOI: 10.1371/journal.pone.0262722.