» Articles » PMID: 29564027

Analysis of Long Range Dependence in the EEG Signals of Alzheimer Patients

Overview
Journal Cogn Neurodyn
Publisher Springer
Specialty Neurology
Date 2018 Mar 23
PMID 29564027
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Alzheimer's disease (AD), a cognitive disability is analysed using a long range dependence parameter, hurst exponent (HE), calculated based on the time domain analysis of the measured electrical activity of brain. The electroencephalogram (EEG) signals of controls and mild cognitive impairment (MCI)-AD patients are evaluated under normal resting and mental arithmetic conditions. Simultaneous low pass filtering and total variation denoising algorithm is employed for preprocessing. Larger values of HE observed in the right hemisphere of the brain for AD patients indicated a decrease in irregularity of the EEG signal under cognitive task conditions. Correlations between HE and the neuropsychological indices are analysed using bivariate correlation analysis. The observed reduction in the values of Auto mutual information and cross mutual information in the local antero-frontal and distant regions in the brain hemisphere indicates the loss of information transmission in MCI-AD patients.

Citing Articles

An EEG-based framework for automated discrimination of conversion to Alzheimer's disease in patients with amnestic mild cognitive impairment: an 18-month longitudinal study.

Ge Y, Yin J, Chen C, Yang S, Han Y, Ding C Front Aging Neurosci. 2025; 16():1470836.

PMID: 39834619 PMC: 11743677. DOI: 10.3389/fnagi.2024.1470836.


Multi-Threshold Recurrence Rate Plot: A Novel Methodology for EEG Analysis in Alzheimer's Disease and Frontotemporal Dementia.

Zheng H, Xiong X, Zhang X Brain Sci. 2024; 14(6).

PMID: 38928565 PMC: 11202180. DOI: 10.3390/brainsci14060565.


Selection of the optimal channel configuration for implementing wearable EEG devices for the diagnosis of mild cognitive impairment.

Lee K, Choi K, Park S, Lee S, Im C Alzheimers Res Ther. 2022; 14(1):170.

PMID: 36371269 PMC: 9652885. DOI: 10.1186/s13195-022-01115-3.


Functional Connectivity and Complexity in the Phenomenological Model of Mild Cognitive-Impaired Alzheimer's Disease.

Das S, Puthankattil S Front Comput Neurosci. 2022; 16:877912.

PMID: 35733555 PMC: 9207343. DOI: 10.3389/fncom.2022.877912.


Classification of Alzheimer's disease progression based on sMRI using gray matter volume and lateralization index.

Zhang Q, Yang X, Sun Z PLoS One. 2022; 17(3):e0262722.

PMID: 35353825 PMC: 8967000. DOI: 10.1371/journal.pone.0262722.


References
1.
Dauwels J, Srinivasan K, Ramasubba Reddy M, Musha T, Vialatte F, Latchoumane C . Slowing and Loss of Complexity in Alzheimer's EEG: Two Sides of the Same Coin?. Int J Alzheimers Dis. 2011; 2011:539621. PMC: 3090755. DOI: 10.4061/2011/539621. View

2.
Carlino E, Sigaudo M, Pollo A, Benedetti F, Mongini T, Castagna F . Nonlinear analysis of electroencephalogram at rest and during cognitive tasks in patients with schizophrenia. J Psychiatry Neurosci. 2012; 37(4):259-66. PMC: 3380097. DOI: 10.1503/jpn.110030. View

3.
Morris J, Storandt M, Miller J, McKeel D, Price J, Rubin E . Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol. 2001; 58(3):397-405. DOI: 10.1001/archneur.58.3.397. View

4.
Grunwald M, Busse F, Hensel A, Riedel-Heller S, Kruggel F, Arendt T . Theta-power differences in patients with mild cognitive impairment under rest condition and during haptic tasks. Alzheimer Dis Assoc Disord. 2002; 16(1):40-8. DOI: 10.1097/00002093-200201000-00006. View

5.
Binnewijzend M, Schoonheim M, Sanz-Arigita E, Wink A, van der Flier W, Tolboom N . Resting-state fMRI changes in Alzheimer's disease and mild cognitive impairment. Neurobiol Aging. 2011; 33(9):2018-28. DOI: 10.1016/j.neurobiolaging.2011.07.003. View