» Articles » PMID: 29563572

Cortical Travelling Waves: Mechanisms and Computational Principles

Overview
Specialty Neurology
Date 2018 Mar 23
PMID 29563572
Citations 197
Authors
Affiliations
Soon will be listed here.
Abstract

Multichannel recording technologies have revealed travelling waves of neural activity in multiple sensory, motor and cognitive systems. These waves can be spontaneously generated by recurrent circuits or evoked by external stimuli. They travel along brain networks at multiple scales, transiently modulating spiking and excitability as they pass. Here, we review recent experimental findings that have found evidence for travelling waves at single-area (mesoscopic) and whole-brain (macroscopic) scales. We place these findings in the context of the current theoretical understanding of wave generation and propagation in recurrent networks. During the large low-frequency rhythms of sleep or the relatively desynchronized state of the awake cortex, travelling waves may serve a variety of functions, from long-term memory consolidation to processing of dynamic visual stimuli. We explore new avenues for experimental and computational understanding of the role of spatiotemporal activity patterns in the cortex.

Citing Articles

Velocities of hippocampal traveling waves are proportional to their coherence frequency.

Goelman G, Benoliel T, Israel Z, Heymann S, Leon J, Ekstein D PLoS One. 2025; 20(2):e0313900.

PMID: 39982932 PMC: 11844891. DOI: 10.1371/journal.pone.0313900.


Touch-evoked traveling waves establish a translaminar spacetime code.

Gonzales D, Khan H, Keri H, Yadav S, Steward C, Muller L Sci Adv. 2025; 11(5):eadr4038.

PMID: 39889002 PMC: 11784861. DOI: 10.1126/sciadv.adr4038.


The functional role of oscillatory dynamics in neocortical circuits: A computational perspective.

Effenberger F, Carvalho P, Dubinin I, Singer W Proc Natl Acad Sci U S A. 2025; 122(4):e2412830122.

PMID: 39847330 PMC: 11789028. DOI: 10.1073/pnas.2412830122.


Excessive propagation of right frontal beta oscillations in patients with a history of major depressive disorder.

Sihn D, Kim S Biomed Eng Lett. 2025; 15(1):159-168.

PMID: 39781055 PMC: 11703794. DOI: 10.1007/s13534-024-00433-9.


Dynamics of neural activity in early nervous system evolution.

Kennedy A, Weissbourd B Curr Opin Behav Sci. 2025; 59.

PMID: 39758090 PMC: 11694645. DOI: 10.1016/j.cobeha.2024.101437.


References
1.
Diester I, Kaufman M, Mogri M, Pashaie R, Goo W, Yizhar O . An optogenetic toolbox designed for primates. Nat Neurosci. 2011; 14(3):387-97. PMC: 3150193. DOI: 10.1038/nn.2749. View

2.
Shoham D, Glaser D, Arieli A, Kenet T, Wijnbergen C, Toledo Y . Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron. 2000; 24(4):791-802. DOI: 10.1016/s0896-6273(00)81027-2. View

3.
Besserve M, Lowe S, Logothetis N, Scholkopf B, Panzeri S . Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer. PLoS Biol. 2015; 13(9):e1002257. PMC: 4579086. DOI: 10.1371/journal.pbio.1002257. View

4.
Ribary U, Ioannides A, Singh K, Hasson R, Bolton J, Lado F . Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc Natl Acad Sci U S A. 1991; 88(24):11037-41. PMC: 53068. DOI: 10.1073/pnas.88.24.11037. View

5.
van Kerkoerle T, Self M, Dagnino B, Gariel-Mathis M, Poort J, van der Togt C . Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc Natl Acad Sci U S A. 2014; 111(40):14332-41. PMC: 4210002. DOI: 10.1073/pnas.1402773111. View