» Articles » PMID: 29540695

The Underappreciated Potential of Peatlands in Global Climate Change Mitigation Strategies

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Mar 16
PMID 29540695
Citations 61
Authors
Affiliations
Soon will be listed here.
Abstract

Soil carbon sequestration and avoidable emissions through peatland restoration are both strategies to tackle climate change. Here we compare their potential and environmental costs regarding nitrogen and land demand. In the event that no further areas are exploited, drained peatlands will cumulatively release 80.8 Gt carbon and 2.3 Gt nitrogen. This corresponds to a contemporary annual greenhouse gas emission of 1.91 (0.31-3.38) Gt CO-eq. that could be saved with peatland restoration. Soil carbon sequestration on all agricultural land has comparable mitigation potential. However, additional nitrogen is needed to build up a similar carbon pool in organic matter of mineral soils, equivalent to 30-80% of the global fertilizer nitrogen application annually. Restoring peatlands is 3.4 times less nitrogen costly and involves a much smaller land area demand than mineral soil carbon sequestration, calling for a stronger consideration of peatland rehabilitation as a mitigation measure.

Citing Articles

Impact of drainage on peatland soil environments and greenhouse gas emissions in Northeast China.

Yang T, Jiang J, He Q, Shi F, Jiang H, Wu H Sci Rep. 2025; 15(1):8320.

PMID: 40064960 PMC: 11894093. DOI: 10.1038/s41598-025-92655-9.


Greenhouse gas removal in agricultural peatland via raised water levels and soil amendment.

Jeewani P, Brown R, Rhymes J, McNamara N, Chadwick D, Jones D Biochar. 2025; 7(1):39.

PMID: 39991092 PMC: 11845426. DOI: 10.1007/s42773-024-00422-2.


A 20 m spatial resolution peatland extent map of Alaska.

Lara M, Michaelides R, Anderson D, Chen W, Hall E, Ludden C Sci Data. 2025; 12(1):226.

PMID: 39915498 PMC: 11802868. DOI: 10.1038/s41597-025-04502-1.


Temporal dynamics of soil microbial C and N cycles with GHG fluxes in the transition from tropical peatland forest to oil palm plantation.

Midot F, Goh K, Liew K, Lau S, Espenberg M, Mander U Appl Environ Microbiol. 2024; 91(1):e0198624.

PMID: 39714193 PMC: 11784229. DOI: 10.1128/aem.01986-24.


Birch ( Ehrh.) Encroachment Alters Contribution of Plant Functional Groups to Ecosystem Carbon Cycling in a Rewetted Bog.

Welpelo C, Dubbert M, Tiemeyer B, Knohl A, Piayda A Ecol Evol. 2024; 14(12):e70745.

PMID: 39703365 PMC: 11655183. DOI: 10.1002/ece3.70745.


References
1.
Ladha J, Reddy C, Padre A, van Kessel C . Role of nitrogen fertilization in sustaining organic matter in cultivated soils. J Environ Qual. 2011; 40(6):1756-66. DOI: 10.2134/jeq2011.0064. View

2.
Paustian K, Lehmann J, Ogle S, Reay D, Robertson G, Smith P . Climate-smart soils. Nature. 2016; 532(7597):49-57. DOI: 10.1038/nature17174. View

3.
Sommer R, Bossio D . Dynamics and climate change mitigation potential of soil organic carbon sequestration. J Environ Manage. 2014; 144:83-7. DOI: 10.1016/j.jenvman.2014.05.017. View

4.
Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P . Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond B Biol Sci. 2007; 363(1492):789-813. PMC: 2610110. DOI: 10.1098/rstb.2007.2184. View

5.
Dargie G, Lewis S, Lawson I, Mitchard E, Page S, Bocko Y . Age, extent and carbon storage of the central Congo Basin peatland complex. Nature. 2017; 542(7639):86-90. DOI: 10.1038/nature21048. View