» Articles » PMID: 29510217

Computational Prediction of Chemical Reactions: Current Status and Outlook

Overview
Specialty Pharmacology
Date 2018 Mar 7
PMID 29510217
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

Over the past few decades, various computational methods have become increasingly important for discovering and developing novel drugs. Computational prediction of chemical reactions is a key part of an efficient drug discovery process. In this review, we discuss important parts of this field, with a focus on utilizing reaction data to build predictive models, the existing programs for synthesis prediction, and usage of quantum mechanics and molecular mechanics (QM/MM) to explore chemical reactions. We also outline potential future developments with an emphasis on pre-competitive collaboration opportunities.

Citing Articles

Simple User-Friendly Reaction Format.

Nippa D, Muller A, Atz K, Konrad D, Grether U, Martin R Mol Inform. 2025; 44(1):e202400361.

PMID: 39846425 PMC: 11755691. DOI: 10.1002/minf.202400361.


DrugSynthMC: An Atom-Based Generation of Drug-like Molecules with Monte Carlo Search.

Roucairol M, Georgiou A, Cazenave T, Prischi F, Pardo O J Chem Inf Model. 2024; 64(18):7097-7107.

PMID: 39249497 PMC: 11423341. DOI: 10.1021/acs.jcim.4c01451.


Benchmarking machine-readable vectors of chemical reactions on computed activation barriers.

van Gerwen P, Briling K, Calvino Alonso Y, Franke M, Corminboeuf C Digit Discov. 2024; 3(5):932-943.

PMID: 38756222 PMC: 11094696. DOI: 10.1039/d3dd00175j.


Integrated data-driven cross-disciplinary framework to prevent chemical water pollution.

Ateia M, Sigmund G, Bentel M, Washington J, Lai A, Merrill N One Earth. 2024; 6(8).

PMID: 38264630 PMC: 10802893. DOI: 10.1016/j.oneear.2023.07.001.


Transferable Machine Learning Interatomic Potential for Bond Dissociation Energy Prediction of Drug-like Molecules.

Gelzinyte E, Oeren M, Segall M, Csanyi G J Chem Theory Comput. 2023; 20(1):164-177.

PMID: 38108269 PMC: 10782450. DOI: 10.1021/acs.jctc.3c00710.