» Articles » PMID: 29507294

One Step Fabrication of Silicon Nanocones with Wide-angle Enhanced Light Absorption

Overview
Journal Sci Rep
Specialty Science
Date 2018 Mar 7
PMID 29507294
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

We report the fabrication of an array of random Silicon nanocones using a KrF excimer laser. A 370 nm thick amorphous Silicon layer deposited on a glass substrate was used in the process. The fabricated nanocones showed a large and broadband absorption enhancement over the entire visible wavelength range. An enhancement up to 350% is measured at λ = 650 nm. Additionally, the laser irradiation caused the nanocones to crystallize. The effect of changing the laser parameters (i.e. energy density, time, and frequency) on the morphology and the absorption is studied and compared. Wide-angle anti-reflective properties have been observed for the fabricated nanocones with less than 10% reflection for angles up to 60°. The major limitation of amorphous silicon thin film solar cells is the reduced absorption. This problem could be solved if light is trapped efficiently inside the thin film without the need of increasing the film thickness. The random array of nanocones presented in this work showed a substantial increase in absorption over a wide angle, were fabricated at a low cost and are easily scalable. This technique offers a fast approach which could significantly help in overcoming the absorption limitation.

Citing Articles

Precision Fabrication and Optimization of Nanostructures for Exosome Detection via Surface-Enhanced Raman Spectroscopy.

Wang Q, Yu B, Yang B, Zhang X, Yu G, Wang Z Nanomaterials (Basel). 2025; 15(4).

PMID: 39997829 PMC: 11858208. DOI: 10.3390/nano15040266.


Laser-Induced Nanostructured Si and SiGe Layers for Enhanced Optical and Thermoelectric Performance.

El-Rifai J, Bsaibess E, Christopoulos S, Giovannelli F, Slimani A, Laux-Le Guyon V ACS Omega. 2024; 9(48):47506-47518.

PMID: 39651110 PMC: 11618418. DOI: 10.1021/acsomega.4c06006.


Fabrication of crystalline silicon nanowires coated with graphene from graphene oxide on amorphous silicon substrate using excimer laser.

Aziz C, Othman M, Amer A, Ghanim A, Swillam M Heliyon. 2024; 10(13):e34023.

PMID: 39071646 PMC: 11282994. DOI: 10.1016/j.heliyon.2024.e34023.


On-Chip Monolithically Integrated Ultraviolet Low-Threshold Plasmonic Metal-Semiconductor Heterojunction Nanolasers.

Sun J, Nguyen D, Liu J, Lo C, Ma Y, Chen Y Adv Sci (Weinh). 2023; 10(28):e2301493.

PMID: 37559172 PMC: 10558691. DOI: 10.1002/advs.202301493.


Light-Trapping Electrode for the Efficiency Enhancement of Bifacial Perovskite Solar Cells.

Obraztsova A, Barettin D, Furasova A, Voroshilov P, der Maur M, Orsini A Nanomaterials (Basel). 2022; 12(18).

PMID: 36144998 PMC: 9500818. DOI: 10.3390/nano12183210.

References
1.
Battaglia C, Hsu C, Soderstrom K, Escarre J, Haug F, Charriere M . Light trapping in solar cells: can periodic beat random?. ACS Nano. 2012; 6(3):2790-7. DOI: 10.1021/nn300287j. View

2.
Lin Y, Xu Z, Yu D, Lu L, Yin M, Tavakoli M . Dual-Layer Nanostructured Flexible Thin-Film Amorphous Silicon Solar Cells with Enhanced Light Harvesting and Photoelectric Conversion Efficiency. ACS Appl Mater Interfaces. 2016; 8(17):10929-36. DOI: 10.1021/acsami.6b02194. View

3.
Ali M, Zhou F, Chen K, Kotzur C, Xiao C, Bourgeois L . Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat Commun. 2016; 7:11335. PMC: 4842983. DOI: 10.1038/ncomms11335. View

4.
Wang W, Lin C, Chen H, Chang C, Huang J, Yang M . Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition. ACS Appl Mater Interfaces. 2013; 5(19):9752-9. DOI: 10.1021/am402889k. View

5.
Li Y, Li M, Fu P, Li R, Song D, Shen C . A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells. Sci Rep. 2015; 5:11532. PMC: 4481639. DOI: 10.1038/srep11532. View