» Articles » PMID: 29507228

Solution NMR Structure of Yeast Rcf1, a Protein Involved in Respiratory Supercomplex Formation

Overview
Specialty Science
Date 2018 Mar 7
PMID 29507228
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

The respiratory supercomplex factor 1 (Rcf1) protein is located in the mitochondrial inner membrane where it is involved in formation of supercomplexes composed of respiratory complexes III and IV. We report the solution structure of Rcf1, which forms a dimer in dodecylphosphocholine (DPC) micelles, where each monomer consists of a bundle of five transmembrane (TM) helices and a short flexible soluble helix (SH). Three TM helices are unusually charged and provide the dimerization interface consisting of 10 putative salt bridges, defining a "charge zipper" motif. The dimer structure is supported by molecular dynamics (MD) simulations in DPC, although the simulations show a more dynamic dimer interface than the NMR data. Furthermore, CD and NMR data indicate that Rcf1 undergoes a structural change when reconstituted in liposomes, which is supported by MD data, suggesting that the dimer structure is unstable in a planar membrane environment. Collectively, these data indicate a dynamic monomer-dimer equilibrium. Furthermore, the Rcf1 dimer interacts with cytochrome , suggesting a role as an electron-transfer bridge between complexes III and IV. The Rcf1 structure will help in understanding its functional roles at a molecular level.

Citing Articles

Pervasive, conserved secondary structure in highly charged protein regions.

Triandafillou C, Pan R, Dinner A, Drummond D PLoS Comput Biol. 2023; 19(10):e1011565.

PMID: 37844070 PMC: 10602382. DOI: 10.1371/journal.pcbi.1011565.


The functional significance of mitochondrial respiratory chain supercomplexes.

Kohler A, Barrientos A, Fontanesi F, Ott M EMBO Rep. 2023; 24(11):e57092.

PMID: 37828827 PMC: 10626428. DOI: 10.15252/embr.202357092.


Structure and Mechanism of Respiratory III-IV Supercomplexes in Bioenergetic Membranes.

Brzezinski P, Moe A, Adelroth P Chem Rev. 2021; 121(15):9644-9673.

PMID: 34184881 PMC: 8361435. DOI: 10.1021/acs.chemrev.1c00140.


NMR structural analysis of the yeast cytochrome c oxidase subunit Cox13 and its interaction with ATP.

Zhou S, Pettersson P, Bjorck M, Dawitz H, Brzezinski P, Maler L BMC Biol. 2021; 19(1):98.

PMID: 33971868 PMC: 8111780. DOI: 10.1186/s12915-021-01036-x.


HIGD-Driven Regulation of Cytochrome Oxidase Biogenesis and Function.

Timon-Gomez A, Bartley-Dier E, Fontanesi F, Barrientos A Cells. 2020; 9(12).

PMID: 33291261 PMC: 7762129. DOI: 10.3390/cells9122620.


References
1.
Vranken W, Boucher W, Stevens T, Fogh R, Pajon A, Llinas M . The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins. 2005; 59(4):687-96. DOI: 10.1002/prot.20449. View

2.
Walther T, Gottselig C, Grage S, Wolf M, Vargiu A, Klein M . Folding and self-assembly of the TatA translocation pore based on a charge zipper mechanism. Cell. 2013; 152(1-2):316-26. DOI: 10.1016/j.cell.2012.12.017. View

3.
Luttik M, Overkamp K, Kotter P, de Vries S, van Dijken J, Pronk J . The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem. 1998; 273(38):24529-34. DOI: 10.1074/jbc.273.38.24529. View

4.
Guo R, Gu J, Wu M, Yang M . Amazing structure of respirasome: unveiling the secrets of cell respiration. Protein Cell. 2016; 7(12):854-865. PMC: 5205662. DOI: 10.1007/s13238-016-0329-7. View

5.
Chazotte B, Hackenbrock C . The multicollisional, obstructed, long-range diffusional nature of mitochondrial electron transport. J Biol Chem. 1988; 263(28):14359-67. View