» Articles » PMID: 29501467

Megakaryocyte Ontogeny: Clinical and Molecular Significance

Overview
Journal Exp Hematol
Specialty Hematology
Date 2018 Mar 5
PMID 29501467
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Fetal megakaryocytes (Mks) differ from adult Mks in key parameters that affect their capacity for platelet production. However, despite being smaller, more proliferative, and less polyploid, fetal Mks generally mature in the same manner as adult Mks. The phenotypic features unique to fetal Mks predispose patients to several disease conditions, including infantile thrombocytopenia, infantile megakaryoblastic leukemias, and poor platelet recovery after umbilical cord blood stem cell transplantations. Ontogenic Mk differences also affect new strategies being developed to address global shortages of platelet transfusion units. These donor-independent, ex vivo production platforms are hampered by the limited proliferative capacity of adult-type Mks and the inferior platelet production by fetal-type Mks. Understanding the molecular programs that distinguish fetal versus adult megakaryopoiesis will help in improving approaches to these clinical problems. This review summarizes the phenotypic differences between fetal and adult Mks, the disease states associated with fetal megakaryopoiesis, and recent advances in the understanding of mechanisms that determine ontogenic Mk transitions.

Citing Articles

MXRA7 is involved in megakaryocyte differentiation and platelet production.

Sun Z, Wang B, Shen Y, Ma K, Wang T, Wang Y Blood Sci. 2023; 5(3):160-169.

PMID: 37546710 PMC: 10400050. DOI: 10.1097/BS9.0000000000000167.


Ex Vivo Production of Platelets From iPSCs: The iPLAT1 Study and Beyond.

Sugimoto N, Eto K Hemasphere. 2023; 7(6):e884.

PMID: 37213327 PMC: 10194644. DOI: 10.1097/HS9.0000000000000884.


Nupr1 Negatively Regulates Endothelial to Hematopoietic Transition in the Aorta-Gonad-Mesonephros Region.

Wang H, Liu D, Chen H, Jiao Y, Zhao H, Li Z Adv Sci (Weinh). 2023; 10(6):e2203813.

PMID: 36638254 PMC: 9951349. DOI: 10.1002/advs.202203813.


Relieving DYRK1A repression of MKL1 confers an adult-like phenotype to human infantile megakaryocytes.

Elagib K, Brock A, Clementelli C, Mosoyan G, Delehanty L, Sahu R J Clin Invest. 2022; 132(19).

PMID: 35925681 PMC: 9525118. DOI: 10.1172/JCI154839.


Augmented Production of Platelets From Cord Blood With Euchromatic Histone Lysine Methyltransferase Inhibition.

Liu Y, Zhao J, Wang Y, Su P, Wang H, Liu C Stem Cells Transl Med. 2022; 11(9):946-958.

PMID: 35880582 PMC: 9492236. DOI: 10.1093/stcltm/szac048.


References
1.
Ruggeri Z, De Marco L, Gatti L, Bader R, Montgomery R . Platelets have more than one binding site for von Willebrand factor. J Clin Invest. 1983; 72(1):1-12. PMC: 1129155. DOI: 10.1172/jci110946. View

2.
Notta F, Zandi S, Takayama N, Dobson S, Gan O, Wilson G . Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science. 2015; 351(6269):aab2116. PMC: 4816201. DOI: 10.1126/science.aab2116. View

3.
Allen Graeve J, de Alarcon P . Megakaryocytopoiesis in the human fetus. Arch Dis Child. 1989; 64(4 Spec No):481-4. PMC: 1592041. DOI: 10.1136/adc.64.4_spec_no.481. View

4.
Emmrich S, Henke K, Hegermann J, Ochs M, Reinhardt D, Klusmann J . miRNAs can increase the efficiency of ex vivo platelet generation. Ann Hematol. 2012; 91(11):1673-84. DOI: 10.1007/s00277-012-1517-z. View

5.
Ree I, Fustolo-Gunnink S, Bekker V, Fijnvandraat K, Steggerda S, Lopriore E . Thrombocytopenia in neonatal sepsis: Incidence, severity and risk factors. PLoS One. 2017; 12(10):e0185581. PMC: 5627935. DOI: 10.1371/journal.pone.0185581. View