» Articles » PMID: 29499164

Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs Candidate Gene Selection for Sporadic Parkinson Disease

Overview
Journal Am J Hum Genet
Publisher Cell Press
Specialty Genetics
Date 2018 Mar 3
PMID 29499164
Citations 73
Authors
Affiliations
Soon will be listed here.
Abstract

Genetic variation modulating risk of sporadic Parkinson disease (PD) has been primarily explored through genome-wide association studies (GWASs). However, like many other common genetic diseases, the impacted genes remain largely unknown. Here, we used single-cell RNA-seq to characterize dopaminergic (DA) neuron populations in the mouse brain at embryonic and early postnatal time points. These data facilitated unbiased identification of DA neuron subpopulations through their unique transcriptional profiles, including a postnatal neuroblast population and substantia nigra (SN) DA neurons. We use these population-specific data to develop a scoring system to prioritize candidate genes in all 49 GWAS intervals implicated in PD risk, including genes with known PD associations and many with extensive supporting literature. As proof of principle, we confirm that the nigrostriatal pathway is compromised in Cplx1-null mice. Ultimately, this systematic approach establishes biologically pertinent candidates and testable hypotheses for sporadic PD, informing a new era of PD genetic research.

Citing Articles

Single-Cell RNA-Seq Reveals the Pseudo-temporal Dynamic Evolution Characteristics of ADSCs to Neuronal Differentiation.

Yuan X, Li W, Liu Q, Ou Y, Li J, Yan Q Cell Mol Neurobiol. 2024; 45(1):5.

PMID: 39661257 PMC: 11634962. DOI: 10.1007/s10571-024-01524-y.


TARGET-seq: Linking single-cell transcriptomics of human dopaminergic neurons with their target specificity.

Fiorenzano A, Storm P, Sozzi E, Bruzelius A, Corsi S, Kajtez J Proc Natl Acad Sci U S A. 2024; 121(47):e2410331121.

PMID: 39541349 PMC: 11588066. DOI: 10.1073/pnas.2410331121.


A Single-Cell Atlas of the Substantia Nigra Reveals Therapeutic Effects of Icaritin in a Rat Model of Parkinson's Disease.

Wu H, Zhang Z, Zhou P, Sui X, Liu X, Sun Y Antioxidants (Basel). 2024; 13(10).

PMID: 39456437 PMC: 11505506. DOI: 10.3390/antiox13101183.


Advancements in Single-Cell RNA Sequencing and Spatial Transcriptomics for Central Nervous System Disease.

Zhang Y, Li T, Wang G, Ma Y Cell Mol Neurobiol. 2024; 44(1):65.

PMID: 39387975 PMC: 11467076. DOI: 10.1007/s10571-024-01499-w.


Circular RNAs regulate neuron size and migration of midbrain dopamine neurons during development.

Rybiczka-Tesulov M, Garritsen O, Veno M, Wieg L, Dijk R, Rahimi K Nat Commun. 2024; 15(1):6773.

PMID: 39117691 PMC: 11310423. DOI: 10.1038/s41467-024-51041-1.


References
1.
Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S, Loh S . PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet. 2010; 20(5):867-79. PMC: 3033179. DOI: 10.1093/hmg/ddq526. View

2.
Asmus S, Cocanougher B, Allen D, Boone J, Brooks E, Hawkins S . Increasing proportions of tyrosine hydroxylase-immunoreactive interneurons colocalize with choline acetyltransferase or vasoactive intestinal peptide in the developing rat cerebral cortex. Brain Res. 2011; 1383:108-19. PMC: 3062751. DOI: 10.1016/j.brainres.2011.01.101. View

3.
Booth H, Hirst W, Wade-Martins R . The Role of Astrocyte Dysfunction in Parkinson's Disease Pathogenesis. Trends Neurosci. 2017; 40(6):358-370. PMC: 5462417. DOI: 10.1016/j.tins.2017.04.001. View

4.
Wonsey D, Zeller K, Dang C . The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation. Proc Natl Acad Sci U S A. 2002; 99(10):6649-54. PMC: 124457. DOI: 10.1073/pnas.102523299. View

5.
Lahut S, Gispert S, Omur O, Depboylu C, Seidel K, Dominguez-Bautista J . Blood RNA biomarkers in prodromal PARK4 and rapid eye movement sleep behavior disorder show role of complexin 1 loss for risk of Parkinson's disease. Dis Model Mech. 2017; 10(5):619-631. PMC: 5451169. DOI: 10.1242/dmm.028035. View