» Articles » PMID: 29498733

Optogenetically Controlled Protein Kinases for Regulation of Cellular Signaling

Overview
Journal Chem Soc Rev
Specialty Chemistry
Date 2018 Mar 3
PMID 29498733
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Protein kinases are involved in the regulation of many cellular processes including cell differentiation, survival, migration, axon guidance and neuronal plasticity. A growing set of optogenetic tools, termed opto-kinases, allows activation and inhibition of different protein kinases with light. The optogenetic regulation enables fast, reversible and non-invasive manipulation of protein kinase activities, complementing traditional methods, such as treatment with growth factors, protein kinase inhibitors or chemical dimerizers. In this review, we summarize the properties of the existing optogenetic tools for controlling tyrosine kinases and serine-threonine kinases. We discuss how the opto-kinases can be applied for studies of spatial and temporal aspects of protein kinase signaling in cells and organisms. We compare approaches for chemical and optogenetic regulation of protein kinase activity and present guidelines for selection of opto-kinases and equipment to control them with light. We also describe strategies to engineer novel opto-kinases on the basis of various photoreceptors.

Citing Articles

Identification of potential biomarkers associated with oxidative stress in the pathogenesis of pre-eclampsia.

Liu X, Bai Y, Chen H, Qian N, Wu L, Zhao L Medicine (Baltimore). 2025; 104(10):e41784.

PMID: 40068030 PMC: 11902957. DOI: 10.1097/MD.0000000000041784.


Reversible light-responsive protein hydrogel for on-demand cell encapsulation and release.

Narayan O, Dong J, Huang M, Chen L, Liu L, Nguyen V Acta Biomater. 2025; 193:202-214.

PMID: 39800098 PMC: 11847564. DOI: 10.1016/j.actbio.2025.01.012.


Optogenetic therapeutic strategies for diabetes mellitus.

Deng X, Peng D, Yao Y, Huang K, Wang J, Ma Z J Diabetes. 2024; 16(6):e13557.

PMID: 38751366 PMC: 11096815. DOI: 10.1111/1753-0407.13557.


Tyrosine phosphatase SHP2 aggravates tumor progression and glycolysis by dephosphorylating PKM2 in gastric cancer.

Wang P, Han Y, Pan W, Du J, Zuo D, Ba Y MedComm (2020). 2024; 5(4):e527.

PMID: 38576457 PMC: 10993348. DOI: 10.1002/mco2.527.


Adult tissue-specific stem cell interaction: novel technologies and research advances.

Luo X, Liu Z, Xu R Front Cell Dev Biol. 2023; 11:1220694.

PMID: 37808078 PMC: 10551553. DOI: 10.3389/fcell.2023.1220694.


References
1.
Li E, Hristova K . Receptor tyrosine kinase transmembrane domains: Function, dimer structure and dimerization energetics. Cell Adh Migr. 2010; 4(2):249-54. PMC: 2900622. DOI: 10.4161/cam.4.2.10725. View

2.
Wang H, Ma L, Li J, Zhao H, Deng X . Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science. 2001; 294(5540):154-8. DOI: 10.1126/science.1063630. View

3.
Zoltowski B, Schwerdtfeger C, Widom J, Loros J, Bilwes A, Dunlap J . Conformational switching in the fungal light sensor Vivid. Science. 2007; 316(5827):1054-7. PMC: 3682417. DOI: 10.1126/science.1137128. View

4.
Reichhart E, Ingles-Prieto A, Tichy A, McKenzie C, Janovjak H . A Phytochrome Sensory Domain Permits Receptor Activation by Red Light. Angew Chem Int Ed Engl. 2016; 55(21):6339-42. DOI: 10.1002/anie.201601736. View

5.
Malumbres M . Cyclin-dependent kinases. Genome Biol. 2014; 15(6):122. PMC: 4097832. DOI: 10.1186/gb4184. View