Miskalis A, Shirguppe S, Winter J, Elias G, Swami D, Nambiar A
Nat Commun. 2024; 15(1):10354.
PMID: 39609418
PMC: 11604662.
DOI: 10.1038/s41467-024-54529-y.
Thiruppathi A, Salunkhe S, Ramasamy S, Palaniswamy R, Rajagopalan V, Rathnasamy S
Plants (Basel). 2024; 13(21).
PMID: 39519891
PMC: 11547960.
DOI: 10.3390/plants13212972.
Zhang Y, Liu Y, Qin W, Zheng S, Xiao J, Xia X
Nat Commun. 2024; 15(1):9526.
PMID: 39496611
PMC: 11535530.
DOI: 10.1038/s41467-024-53735-y.
Hillary V, Ceasar S
Plant Cell Rep. 2024; 43(11):271.
PMID: 39453560
DOI: 10.1007/s00299-024-03346-0.
Yang X, Yu S, Yan S, Wang H, Fang W, Chen Y
Genes (Basel). 2024; 15(5).
PMID: 38790193
PMC: 11121554.
DOI: 10.3390/genes15050564.
Engineering disease-resistant plants with alternative translation efficiency by switching uORF types through CRISPR.
Tian J, Tang Z, Niu R, Zhou Y, Yang D, Chen D
Sci China Life Sci. 2024; 67(8):1715-1726.
PMID: 38679667
DOI: 10.1007/s11427-024-2588-9.
Recent Advances in Tomato Gene Editing.
Larriba E, Yaroshko O, Perez-Perez J
Int J Mol Sci. 2024; 25(5).
PMID: 38473859
PMC: 10932025.
DOI: 10.3390/ijms25052606.
CRISPR/Cas genome editing in plants: mechanisms, applications, and overcoming bottlenecks.
Hwarari D, Radani Y, Ke Y, Chen J, Yang L
Funct Integr Genomics. 2024; 24(2):50.
PMID: 38441816
DOI: 10.1007/s10142-024-01314-1.
An adenine base editor variant expands context compatibility.
Xiao Y, Wu Y, Tang W
Nat Biotechnol. 2024; 42(9):1442-1453.
PMID: 38168987
DOI: 10.1038/s41587-023-01994-3.
Precise genome editing with base editors.
Liu H, Zhu Y, Li M, Gu Z
Med Rev (2021). 2023; 3(1):75-84.
PMID: 37724105
PMC: 10471085.
DOI: 10.1515/mr-2022-0044.
Green revolution to genome revolution: driving better resilient crops against environmental instability.
Chawla R, Poonia A, Samantara K, Mohapatra S, Naik S, Ashwath M
Front Genet. 2023; 14:1204585.
PMID: 37719711
PMC: 10500607.
DOI: 10.3389/fgene.2023.1204585.
Developing a highly efficient CGBE base editor in watermelon.
Wang D, Chen Y, Zhu T, Wang J, Liu M, Tian S
Hortic Res. 2023; 10(9):uhad155.
PMID: 37719272
PMC: 10500149.
DOI: 10.1093/hr/uhad155.
Applications and Prospects of CRISPR/Cas9-Mediated Base Editing in Plant Breeding.
Li Y, Liang J, Deng B, Jiang Y, Zhu J, Chen L
Curr Issues Mol Biol. 2023; 45(2):918-935.
PMID: 36826004
PMC: 9955079.
DOI: 10.3390/cimb45020059.
A CRISPR way for accelerating cereal crop improvement: Progress and challenges.
Basu U, Ahmed S, Bhat B, Anwar Z, Ali A, Ijaz A
Front Genet. 2023; 13:866976.
PMID: 36685816
PMC: 9852743.
DOI: 10.3389/fgene.2022.866976.
Upgrading the genome of an elite japonica rice variety Kongyu 131 for lodging resistance improvement.
Wang C, Feng X, Yuan Q, Lin K, Zhang X, Yan L
Plant Biotechnol J. 2022; 21(2):419-432.
PMID: 36382925
PMC: 9884016.
DOI: 10.1111/pbi.13963.
Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance.
Maharajan T, Ajeesh Krishna T, Rakkammal K, Ceasar S, Ramesh M
Planta. 2022; 256(6):106.
PMID: 36326904
DOI: 10.1007/s00425-022-04023-w.
CRISPR-Cas nucleases and base editors for plant genome editing.
Gurel F, Zhang Y, Sretenovic S, Qi Y
aBIOTECH. 2022; 1(1):74-87.
PMID: 36305010
PMC: 9584094.
DOI: 10.1007/s42994-019-00010-0.
Single-nucleotide editing for phenotypes in rice using CRISPR/Cas9-mediated adenine base editors.
Molla K, Shih J, Yang Y
aBIOTECH. 2022; 1(2):106-118.
PMID: 36304716
PMC: 9590491.
DOI: 10.1007/s42994-020-00018-x.
Comprehending the evolution of gene editing platforms for crop trait improvement.
Dhakate P, Sehgal D, Vaishnavi S, Chandra A, Singh A, Raina S
Front Genet. 2022; 13:876987.
PMID: 36082000
PMC: 9445674.
DOI: 10.3389/fgene.2022.876987.
Applications of CRISPR/Cas13-Based RNA Editing in Plants.
Kavuri N, Ramasamy M, Qi Y, Mandadi K
Cells. 2022; 11(17).
PMID: 36078073
PMC: 9454418.
DOI: 10.3390/cells11172665.