» Articles » PMID: 29464208

Multi-heme Cytochromes Provide a Pathway for Survival in Energy-limited Environments

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2018 Feb 22
PMID 29464208
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

Bacterial reduction of oxidized sulfur species (OSS) is critical for energy production in anaerobic marine subsurfaces. In organic-poor sediments, H has been considered as a major energy source for bacterial respiration. We identified outer-membrane cytochromes (OMCs) that are broadly conserved in sediment OSS-respiring bacteria and enable cells to directly use electrons from insoluble minerals via extracellular electron transport. Biochemical, transcriptomic, and microscopic analyses revealed that the identified OMCs were highly expressed on the surface of cells and nanofilaments in response to electron donor limitation. This electron uptake mechanism provides sufficient but minimum energy to drive the reduction of sulfate and other OSS. These results suggest a widespread mechanism for survival of OSS-respiring bacteria via electron uptake from solid minerals in energy-poor marine sediments.

Citing Articles

A widespread and ancient bacterial machinery assembles cytochrome OmcS nanowires essential for extracellular electron transfer.

Shen C, Salazar-Morales A, Jung W, Erwin J, Gu Y, Coelho A Cell Chem Biol. 2025; 32(2):239-254.e7.

PMID: 39818215 PMC: 11845295. DOI: 10.1016/j.chembiol.2024.12.013.


Co-occurrence of direct and indirect extracellular electron transfer mechanisms during electroactive respiration in a dissimilatory sulfate reducing bacterium.

Hou L, Cortez R, Hagerman M, Hu Z, Majumder E Microbiol Spectr. 2024; 13(1):e0122624.

PMID: 39636109 PMC: 11705803. DOI: 10.1128/spectrum.01226-24.


Large-scale prediction of outer-membrane multiheme cytochromes uncovers hidden diversity of electroactive bacteria and underlying pathways.

Garber A, Nealson K, Merino N Front Microbiol. 2024; 15:1448685.

PMID: 39411445 PMC: 11475568. DOI: 10.3389/fmicb.2024.1448685.


Microbial magnetite oxidation via MtoAB porin-multiheme cytochrome complex in ES-1.

Keffer J, Zhou N, Rushworth D, Yu Y, Chan C bioRxiv. 2024; .

PMID: 39345469 PMC: 11429942. DOI: 10.1101/2024.09.20.614158.


as a model microbe for the study of corrosion under sulfate-reducing conditions.

Ueki T, Lovley D mLife. 2024; 1(1):13-20.

PMID: 38818327 PMC: 10989807. DOI: 10.1002/mlf2.12018.


References
1.
Shi L, Richardson D, Wang Z, Kerisit S, Rosso K, Zachara J . The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ Microbiol Rep. 2013; 1(4):220-7. DOI: 10.1111/j.1758-2229.2009.00035.x. View

2.
Scheller S, Yu H, Chadwick G, McGlynn S, Orphan V . Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science. 2016; 351(6274):703-7. DOI: 10.1126/science.aad7154. View

3.
Hoehler T, Jorgensen B . Microbial life under extreme energy limitation. Nat Rev Microbiol. 2013; 11(2):83-94. DOI: 10.1038/nrmicro2939. View

4.
Saitou N, Nei M . The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4(4):406-25. DOI: 10.1093/oxfordjournals.molbev.a040454. View

5.
Ravenschlag K, Sahm K, Knoblauch C, Jorgensen B, Amann R . Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Appl Environ Microbiol. 2000; 66(8):3592-602. PMC: 92189. DOI: 10.1128/AEM.66.8.3592-3602.2000. View