Multiplex Recurrence Networks
Overview
Affiliations
We have introduced a multiplex recurrence network approach by combining recurrence networks with the multiplex network approach in order to investigate multivariate time series. The potential use of this approach is demonstrated on coupled map lattices and a typical example from palaeobotany research. In both examples, topological changes in the multiplex recurrence networks allow for the detection of regime changes in their dynamics. The method goes beyond classical interpretation of pollen records by considering the vegetation as a whole and using the intrinsic similarity in the dynamics of the different regional vegetation elements. We find that the different vegetation types behave more similarly when one environmental factor acts as the dominant driving force.
Li J, Zhang N, Xu Y, Wang J, Kang X, Ji R J Neuroeng Rehabil. 2024; 21(1):190.
PMID: 39449006 PMC: 11515527. DOI: 10.1186/s12984-024-01488-6.
Xu Y, Wang J, Wang S, Li J, Hou Y, Guo A J Neuroeng Rehabil. 2024; 21(1):137.
PMID: 39107804 PMC: 11304728. DOI: 10.1186/s12984-024-01435-5.
Li J, Kang X, Li K, Xu Y, Wang Z, Zhang X J Neuroeng Rehabil. 2023; 20(1):170.
PMID: 38124144 PMC: 10734060. DOI: 10.1186/s12984-023-01297-3.
Cai Z, Cheng H, Xing Y, Chen F, Zhang Y, Cui C Front Physiol. 2022; 13:1001415.
PMID: 36160855 PMC: 9500413. DOI: 10.3389/fphys.2022.1001415.
Hasselman F Front Physiol. 2022; 13:859127.
PMID: 35600293 PMC: 9114511. DOI: 10.3389/fphys.2022.859127.