» Articles » PMID: 29426939

SeagrassDB: An Open-source Transcriptomics Landscape for Phylogenetically Profiled Seagrasses and Aquatic Plants

Overview
Journal Sci Rep
Specialty Science
Date 2018 Feb 11
PMID 29426939
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Seagrasses and aquatic plants are important clades of higher plants, significant for carbon sequestration and marine ecological restoration. They are valuable in the sense that they allow us to understand how plants have developed traits to adapt to high salinity and photosynthetically challenged environments. Here, we present a large-scale phylogenetically profiled transcriptomics repository covering seagrasses and aquatic plants. SeagrassDB encompasses a total of 1,052,262 unigenes with a minimum and maximum contig length of 8,831 bp and 16,705 bp respectively. SeagrassDB provides access to 34,455 transcription factors, 470,568 PFAM domains, 382,528 prosite models and 482,121 InterPro domains across 9 species. SeagrassDB allows for the comparative gene mining using BLAST-based approaches and subsequent unigenes sequence retrieval with associated features such as expression (FPKM values), gene ontologies, functional assignments, family level classification, Interpro domains, KEGG orthology (KO), transcription factors and prosite information. SeagrassDB is available to the scientific community for exploring the functional genic landscape of seagrass and aquatic plants at: http://115.146.91.129/index.php .

Citing Articles

LMT: A comprehensive transcriptome database for climate-resilient, nutritionally rich little millet ().

Shekhar S, Prasad A, Banjare K, Kaushik A, Mannade A, Dubey M Front Plant Sci. 2023; 14:1106104.

PMID: 36993866 PMC: 10041709. DOI: 10.3389/fpls.2023.1106104.


The Cell Wall of Seagrasses: Fascinating, Peculiar and a Blank Canvas for Future Research.

Pfeifer L, Classen B Front Plant Sci. 2020; 11:588754.

PMID: 33193541 PMC: 7644952. DOI: 10.3389/fpls.2020.588754.


Stress Memory in Seagrasses: First Insight Into the Effects of Thermal Priming and the Role of Epigenetic Modifications.

Nguyen H, Kim M, Ralph P, Marin-Guirao L, Pernice M, Procaccini G Front Plant Sci. 2020; 11:494.

PMID: 32411166 PMC: 7199800. DOI: 10.3389/fpls.2020.00494.


DOGMA: a web server for proteome and transcriptome quality assessment.

Kemena C, Dohmen E, Bornberg-Bauer E Nucleic Acids Res. 2019; 47(W1):W507-W510.

PMID: 31076763 PMC: 6602495. DOI: 10.1093/nar/gkz366.


Yerba mate (Ilex paraguariensis, A. St.-Hil.) de novo transcriptome assembly based on tissue specific genomic expression profiles.

Fay J, Watkins C, Shrestha R, Litwiniuk S, Talavera Stefani L, Rojas C BMC Genomics. 2018; 19(1):891.

PMID: 30526481 PMC: 6286616. DOI: 10.1186/s12864-018-5240-6.

References
1.
Dattolo E, Gu J, Bayer P, Mazzuca S, Serra I, Spadafora A . Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles. Front Plant Sci. 2013; 4:195. PMC: 3683636. DOI: 10.3389/fpls.2013.00195. View

2.
Golicz A, Schliep M, Lee H, Larkum A, Dolferus R, Batley J . Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network. J Exp Bot. 2015; 66(5):1489-98. PMC: 4339605. DOI: 10.1093/jxb/eru510. View

3.
Lee H, Golicz A, Bayer P, Jiao Y, Tang H, Paterson A . The Genome of a Southern Hemisphere Seagrass Species (Zostera muelleri). Plant Physiol. 2016; 172(1):272-83. PMC: 5074622. DOI: 10.1104/pp.16.00868. View

4.
Tang S, Lomsadze A, Borodovsky M . Identification of protein coding regions in RNA transcripts. Nucleic Acids Res. 2015; 43(12):e78. PMC: 4499116. DOI: 10.1093/nar/gkv227. View

5.
Dohmen E, Kremer L, Bornberg-Bauer E, Kemena C . DOGMA: domain-based transcriptome and proteome quality assessment. Bioinformatics. 2016; 32(17):2577-81. DOI: 10.1093/bioinformatics/btw231. View