» Articles » PMID: 29426889

SiO Nanoparticles Modulate the Electrical Activity of Neuroendocrine Cells Without Exerting Genomic Effects

Overview
Journal Sci Rep
Specialty Science
Date 2018 Feb 11
PMID 29426889
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Engineered silica nanoparticles (NPs) have attracted increasing interest in several applications, and particularly in the field of nanomedicine, thanks to the high biocompatibility of this material. For their optimal and controlled use, the understanding of the mechanisms elicited by their interaction with the biological target is a prerequisite, especially when dealing with cells particularly vulnerable to environmental stimuli like neurons. Here we have combined different electrophysiological approaches (both at the single cell and at the population level) with a genomic screening in order to analyze, in GT1-7 neuroendocrine cells, the impact of SiO NPs (50 ± 3 nm in diameter) on electrical activity and gene expression, providing a detailed analysis of the impact of a nanoparticle on neuronal excitability. We find that 20 µg mL NPs induce depolarization of the membrane potential, with a modulation of the firing of action potentials. Recordings of electrical activity with multielectrode arrays provide further evidence that the NPs evoke a temporary increase in firing frequency, without affecting the functional behavior on a time scale of hours. Finally, NPs incubation up to 24 hours does not induce any change in gene expression.

Citing Articles

Modified Carbon Nanotubes Favor Fibroblast Growth by Tuning the Cell Membrane Potential.

Suarato G, Pressi S, Menna E, Ruben M, Petrini E, Barberis A ACS Appl Mater Interfaces. 2024; 16(3):3093-3105.

PMID: 38206310 PMC: 10811621. DOI: 10.1021/acsami.3c14527.


Electrostatic polarization fields trigger glioblastoma stem cell differentiation.

Fernandez Cabada T, Ruben M, El Merhie A, Zaccaria R, Alabastri A, Petrini E Nanoscale Horiz. 2022; 8(1):95-107.

PMID: 36426604 PMC: 9765404. DOI: 10.1039/d2nh00453d.


A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: identifying exposures determining higher ALS risk.

Re D, Yan B, Calderon-Garciduenas L, Andrew A, Tischbein M, Stommel E J Neurol. 2022; 269(5):2359-2377.

PMID: 34973105 PMC: 9021134. DOI: 10.1007/s00415-021-10928-5.


Impact of Nanoparticles on Brain Health: An Up to Date Overview.

Teleanu D, Chircov C, Grumezescu A, Volceanov A, Teleanu R J Clin Med. 2018; 7(12).

PMID: 30486404 PMC: 6306759. DOI: 10.3390/jcm7120490.

References
1.
Dante S, Petrelli A, Petrini E, Marotta R, Maccione A, Alabastri A . Selective Targeting of Neurons with Inorganic Nanoparticles: Revealing the Crucial Role of Nanoparticle Surface Charge. ACS Nano. 2017; 11(7):6630-6640. PMC: 6090505. DOI: 10.1021/acsnano.7b00397. View

2.
Gilardino A, Catalano F, Ruffinatti F, Alberto G, Nilius B, Antoniotti S . Interaction of SiO2 nanoparticles with neuronal cells: Ionic mechanisms involved in the perturbation of calcium homeostasis. Int J Biochem Cell Biol. 2015; 66:101-11. DOI: 10.1016/j.biocel.2015.07.012. View

3.
Ma H, Groth R, Wheeler D, Barrett C, Tsien R . Excitation-transcription coupling in sympathetic neurons and the molecular mechanism of its initiation. Neurosci Res. 2011; 70(1):2-8. PMC: 3930329. DOI: 10.1016/j.neures.2011.02.004. View

4.
Napierska D, Thomassen L, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M . Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small. 2009; 5(7):846-53. DOI: 10.1002/smll.200800461. View

5.
Bewersdorff T, Vonnemann J, Kanik A, Haag R, Haase A . The influence of surface charge on serum protein interaction and cellular uptake: studies with dendritic polyglycerols and dendritic polyglycerol-coated gold nanoparticles. Int J Nanomedicine. 2017; 12:2001-2019. PMC: 5358989. DOI: 10.2147/IJN.S124295. View